Help: If a circle has a circumference of C, what is the area of the circle in terms of C? A=πC A=C2/4π A=2C/π A=2C2

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Help: If a circle has a circumference of C, what is the area of the circle in terms of C? A=πC A=C2/4π A=2C/π A=2C2

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

i dnt know i have a feeling its C but im not quite shure @Rushwr
\[\sf C=2\pi r\]\[\sf A=\pi r^2\]If we use our equation of circumference and solve for r, we wcan input that into our equation for Area to set it in terms of C \[\sf C = 2\pi r \implies r = \frac{C}{2\pi}\]\[\sf A= \pi\left(\frac{C}{2\pi}\right)^2\]
Now let's expand our function of Area. \[\sf A =\cancel{ \pi} \left(\frac{C^2}{4 \cancel{\pi^2}\pi}\right)\]\[\sf \boxed{A = \frac{C^2}{4\pi}}\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Do you follow, @bruno101 ?
yes i see it seems a little complicated but once u follow its easier @Jhannybean
When they say `in terms of C` they want the function (Area) in terms of Circumference. So basically... \(A(\text{circumference})\)
OK I SEE THANKS!! @Jhannybean
No problem :)

Not the answer you are looking for?

Search for more explanations.

Ask your own question