anonymous
  • anonymous
Help: If a circle has a circumference of C, what is the area of the circle in terms of C? A=πC A=C2/4π A=2C/π A=2C2
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
i dnt know i have a feeling its C but im not quite shure @Rushwr
Jhannybean
  • Jhannybean
\[\sf C=2\pi r\]\[\sf A=\pi r^2\]If we use our equation of circumference and solve for r, we wcan input that into our equation for Area to set it in terms of C \[\sf C = 2\pi r \implies r = \frac{C}{2\pi}\]\[\sf A= \pi\left(\frac{C}{2\pi}\right)^2\]
Jhannybean
  • Jhannybean
Now let's expand our function of Area. \[\sf A =\cancel{ \pi} \left(\frac{C^2}{4 \cancel{\pi^2}\pi}\right)\]\[\sf \boxed{A = \frac{C^2}{4\pi}}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Jhannybean
  • Jhannybean
Do you follow, @bruno101 ?
anonymous
  • anonymous
yes i see it seems a little complicated but once u follow its easier @Jhannybean
Jhannybean
  • Jhannybean
When they say `in terms of C` they want the function (Area) in terms of Circumference. So basically... \(A(\text{circumference})\)
anonymous
  • anonymous
OK I SEE THANKS!! @Jhannybean
Jhannybean
  • Jhannybean
No problem :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.