anonymous
  • anonymous
Sigma (summation) notation question. Will post in comment
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[\sum_{k = 0}^{4}\frac{ 1 }{ k^2 + 1 }\] I rewrote it as: \[\sum_{k = 0}^{4} (k^2 + 1)^{-1}\] do I use now the formula \[\frac{ n(n+1)(2n+1) }{ 6 }\] for the expression (k^2 + 1)^-1 ?
anonymous
  • anonymous
I think that what I wrote in the previous step is incorrect; I don't think the formula can be applied. It can be solved with brute force. \[\frac{ 1 }{ 0^2 + 1} + \frac{ 1 }{ 1^2 + 1} + \frac{ 1 }{ 2^2 + 1} + \frac{ 1 }{ 3^2 + 1} + \frac{ 1 }{ 4^2 + 1}\] \[= \frac{ 1 }{ 0 + 1 } + \frac{ 1 }{ 1 + 1 } + \frac{ 1 }{ 4 + 1 } + \frac{ 1 }{ 9 + 1 } + \frac{ 1 }{ 16 + 1 }\] \[= \frac{ 1 }{ 1 } + \frac{ 1 }{ 2 } + \frac{ 1 }{ 5 } + \frac{ 1 }{ 10 } + \frac{ 1 }{ 17 } =\frac{ 158 }{ 85 } \]
anonymous
  • anonymous
you are correct in the second solution :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
http://www.wolframalpha.com/input/?i=%5Csum_%7Bk+%3D+0%7D%5E%7B4%7D%5Cfrac%7B+1+%7D%7B+k%5E2+%2B+1+%7D+
anonymous
  • anonymous
@Halmos I'm I correct that the summation formula won't work? The formulas can be found @ https://mathwiz.uwstout.edu/video/math-156/ch5s1.html 4th video down (It's not necessary to watch the video, it's on the web page).
anonymous
  • anonymous
the formula u had of k^2 won't work but there is a formula called zeta function and like wise things, this is advanced mathematics don't think about it :P
anonymous
  • anonymous
Thanks.
anonymous
  • anonymous
np :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.