anonymous
  • anonymous
Using the least integer principle, define r to be least integer for which j - qk is positive. Prove that 0< r <=k
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
zzr0ck3r
  • zzr0ck3r
? this shuold that q or j be an r?
anonymous
  • anonymous
Actually r= j - qk. This comes form Euclid's division lemma: j=qk + r
thomas5267
  • thomas5267
Is j and q positive or not?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

thomas5267
  • thomas5267
Proofwiki has a rigorous but rather hard to understand proof. Ask if you need help. https://proofwiki.org/wiki/Division_Theorem
anonymous
  • anonymous
I think I understood the informal proof. Just to make sure, when it says that: b∖(r−r0). −b

Looking for something else?

Not the answer you are looking for? Search for more explanations.