zmudz
  • zmudz
Let \(x\) and \(y\) be positive real numbers such that \(mx+y=1.\) Find the positive \(m\) such that the minimum of \(\left( 1 + \frac{1}{x} \right)\left( 1 + \frac{m}{y} \right)\) is 81.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
solve first for y and sub in the other equation to get only x. then rework equation to simplify. then you can differentiate, set equal to 81 and solve
IrishBoy123
  • IrishBoy123
can you use AM-GM here because when you add the terms in brackets you get \(2 + \frac{1}{xy}\) so you end up solving something like \(\frac{1}{2}(2 + \frac{1}{xy})^2 > 81\) subject to \(y + mx = 1\) and funnily enough 81 is a square number
IrishBoy123
  • IrishBoy123
i know *no* pure maths.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

IrishBoy123
  • IrishBoy123
so could you say \(\frac{1}{\sqrt{2}}\sqrt{81} \lt \frac{1}{\sqrt{2}}\sqrt{\left( 1 + \frac{1}{x} \right)\left( 1 + \frac{m}{y} \right)}\lt \frac{1}{2} \left( 1 + \frac{1}{x} + 1 + \frac{m}{y} \right)\) and go from there?!?!
IrishBoy123
  • IrishBoy123
\[\frac{1}{2}(81) \lt \frac{1}{4} \left( 2 + \frac{y+mx}{xy} \right)^2\] \[\left( 2 + \frac{1}{xy} \right) \gt 9 \sqrt{2} \]
zmudz
  • zmudz
@freckles @Loser66 @ganeshie8 no idea how to differentiate - this is a from a precalc class. Is there a simpler way to solve this problem? Not sure what @IrishBoy123 is doing. Thanks!
thomas5267
  • thomas5267
\[ \left(1+\frac{1}{x}\right)\left(1+\frac{m}{y}\right)=1+\frac{1}{x}+\frac{m}{y}+\frac{m}{xy}\\ \frac{1}{4}\left(1+\frac{1}{x}+\frac{m}{y}+\frac{m}{xy}\right)\geq\sqrt[4]{\frac{m^2}{x^2y^2}}=\sqrt{\frac{|m|}{xy}}\\ \frac{1}{4}\left(1+\frac{1}{x}+\frac{m}{y}+\frac{m}{xy}\right)=\sqrt{\frac{|m|}{xy}}\quad \text{AM-GM}\\ 1+\frac{1}{x}+\frac{m}{y}+\frac{m}{xy}=4\sqrt{\frac{|m|}{xy}}=81\\ 4\sqrt{\frac{|m|}{xy}}=81\\\\ \frac{|m|}{xy}=\frac{6561}{16}\\ mx+y=1\implies m<0\\ \frac{m}{xy}=\frac{-6561}{16}=\frac{1}{x}=\frac{m}{y}=1!?\\ \] Furthermore, Mathematica shows that there is no unique m that satisfies the requirement. For every different x and y there is a different but unique m that satisfies it.
ganeshie8
  • ganeshie8
\[\begin{align} &\left(1+\frac{1}{x}\right)\left(1+\frac{m}{y}\right)\\ &=1+\frac{1}{x}+\frac{m}{y}+\frac{m}{xy}\\ &=1+\frac{y+mx+m}{xy}\\ &=1+\frac{1+m}{x(1-mx)}\\ &\ge1+\frac{1+m}{1/(4m)}~~~\color{gray}{\because x(1-mx)~\le~ 1/(4m) }\\ &=1+4m+4m^2\\ &=(2m+1)^2 \end{align}\] That means the minimum value of \(\left(1+\frac{1}{x}\right)\left(1+\frac{m}{y}\right)\) is \((2m+1)^2\) So, \((2m+1)^2= 81 \implies m =4,-5 \). Since they want positive value, discard \(-5\).
thomas5267
  • thomas5267
But \(m=4\) would certainly be incorrect since \(mx+y=1\) and \(x,y>0\).
ganeshie8
  • ganeshie8
try x = 1/8 y = 1/2
ganeshie8
  • ganeshie8
http://www.wolframalpha.com/input/?i=minimize++%5Cleft%28+1+%2B+%5Cfrac%7B1%7D%7Bx%7D+%5Cright%29%5Cleft%28+1+%2B+%5Cfrac%7B4%7D%7By%7D+%5Cright%29%2C+4x%2By%3D1%2Cx%3E0%2Cy%3E0
thomas5267
  • thomas5267
Oh I see!
thomas5267
  • thomas5267
Why \(\dfrac{y+mx+m}{xy}=\dfrac{1+m}{x(1-mx)}\) and why \(x(1-mx)\leq 4m\)?
freckles
  • freckles
I did my a super super long way... I differentiated: \[f(x)=(1+\frac{1}{x})(1+\frac{m}{1-mx}) \\ \text{ and then set } f'(x) =0 \\ \text{ which eventually led me to the solution } x=\frac{1}{2m} \\ \text{ then I found } m \text{ such that } f(\frac{1}{2m})=81 \]
ganeshie8
  • ganeshie8
for first question, just replace \(y+mx\) by \(1\) for second question, since \(m\) is positive, \(x(1-mx)\) is a parabola facing down with vertex at \((\frac{1}{2m}, \frac{1}{4m})\)

Looking for something else?

Not the answer you are looking for? Search for more explanations.