anonymous
  • anonymous
Hello! I've another question about a non linear differential equation y' - ((xy)/(1-x^2))y = xy^2 I put z=1/y so y=1/z and y'=-(1/z^2)z' Is that correct? At the end of the substitution I got a linear ODE like this: z' = -x -(x/1-x^2) ... I'm right at this point? Thank you in advance
Differential Equations
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
IrishBoy123
  • IrishBoy123
|dw:1441909766831:dw|
anonymous
  • anonymous
yes, is that
IrishBoy123
  • IrishBoy123
are you doing this as a Bernoilli, because... |dw:1441916541845:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

IrishBoy123
  • IrishBoy123
as it stands you can separate this. \[y' = y^2.f(x)\] \[\frac{y}{y^2}' = f(x)\]
anonymous
  • anonymous
Ok thank you IrishBoy... I got it! You just separate the variables ok ok :-)
IrishBoy123
  • IrishBoy123
cool

Looking for something else?

Not the answer you are looking for? Search for more explanations.