Destinyyyy
  • Destinyyyy
Help with difference quotient..
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Destinyyyy
  • Destinyyyy
1 Attachment
Destinyyyy
  • Destinyyyy
@Nnesha
Nnesha
  • Nnesha
substitute x for x+h

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Destinyyyy
  • Destinyyyy
So... f(x)-f(x) / h
Nnesha
  • Nnesha
function is f(x) = sqrt{14x} <--replace x with x+h to find f(x+h)
Nnesha
  • Nnesha
formula is \[\large\rm \frac{ f(\color{ReD}{x+h}) -f(x) }{ h }\]
Destinyyyy
  • Destinyyyy
So square root 14(x+h)
Destinyyyy
  • Destinyyyy
Im at.. square root 14 (x+h-x) over h(square root x+h + square root x)
Nnesha
  • Nnesha
yes right so \[\huge\rm \frac{ \sqrt{14(x+h)} - \sqrt{14x} }{ h }\]
Nnesha
  • Nnesha
eh eh what nope you can't combine both sqrts
Destinyyyy
  • Destinyyyy
?
Nnesha
  • Nnesha
hmm how did you get square root x+h + square root x) at the denominator ?
Destinyyyy
  • Destinyyyy
Final answer--> square root 14 over square root x+h + square root x
Nnesha
  • Nnesha
sqrt{14(x+h) } can be written as sqrt{14} sqrt{x+h) so \[\frac{ \sqrt{14}\sqrt{x+h} -\sqrt{14}\sqrt{x}}{ h }\] sqrt 14 is common so you can take it out
Destinyyyy
  • Destinyyyy
Um not sure where your at
Nnesha
  • Nnesha
\[\huge\rm \frac{ \sqrt{14} }{ \sqrt{x+h}+\sqrt{x}}\] is this ur final answer ?
Destinyyyy
  • Destinyyyy
Yes and its correct.
Nnesha
  • Nnesha
ahh i see so you have to multiply top and bottom with the conjugate of the numerator
Destinyyyy
  • Destinyyyy
Yup
Nnesha
  • Nnesha
sqrt{14(x+h) } can be written as sqrt{14} sqrt{x+h) so \[\huge\rm \frac{ \sqrt{14}\sqrt{x+h} -\sqrt{14}\sqrt{x}}{ h }\] sqrt 14 is common so you can take it out did you understand that step ?
Destinyyyy
  • Destinyyyy
Yeah it gets moved to the front --- square root 14 ( square root x+h) - square root x over h ... That was the second step
Destinyyyy
  • Destinyyyy
Thanks for helping.
Nnesha
  • Nnesha
yw.

Looking for something else?

Not the answer you are looking for? Search for more explanations.