anonymous
  • anonymous
Determine two pairs of polar coordinates for the point (2, -2) with 0° ≤ θ < 360°.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
MTALHAHASSAN2
  • MTALHAHASSAN2
|dw:1441922948541:dw|
anonymous
  • anonymous
would it be (2 square root of 2, 135°), (-2 square root of 2, 315°)?
MTALHAHASSAN2
  • MTALHAHASSAN2
wait what are you trying to find??

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
2 pairs of polar coordinates
MTALHAHASSAN2
  • MTALHAHASSAN2
oh ok
MTALHAHASSAN2
  • MTALHAHASSAN2
give me a sec
MTALHAHASSAN2
  • MTALHAHASSAN2
@chachi123
MTALHAHASSAN2
  • MTALHAHASSAN2
@nanaruiz123 do you still need help??
anonymous
  • anonymous
ya i dont really get how to do this lol
MTALHAHASSAN2
  • MTALHAHASSAN2
@dtan5457 can you plz help
MTALHAHASSAN2
  • MTALHAHASSAN2
@Nnesha
MTALHAHASSAN2
  • MTALHAHASSAN2
@ASAAD123
MTALHAHASSAN2
  • MTALHAHASSAN2
@nanaruiz123 this is the hard question thou
anonymous
  • anonymous
ya its pre-calc
anonymous
  • anonymous
converting rectangular (x,y) to polar (r,θ) : \[r=\sqrt{x^2+y^2}\] \[\theta=\tan^{-1} (\frac{ y }{ x})\] \[r=\sqrt{2^2+(-2)^2}\]= \[2\sqrt{2}\] \[\theta=\tan^{-1} (\frac{ -2 }{ 2})=315\] \[(2\sqrt{2},315)\] the other pair of polar coordinate with negative radius>>(-r,θ+(2k+1)*180) let k=-1 so the other pair \[(-2\sqrt{2},135)\]
anonymous
  • anonymous
oh my god thank you so much @ASAAD123
anonymous
  • anonymous
welcome ^_^ @nanaruiz123
MTALHAHASSAN2
  • MTALHAHASSAN2
woo nice job @ASAAD123

Looking for something else?

Not the answer you are looking for? Search for more explanations.