I don't believe that I solved this problem correctly... (will post below)

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

I don't believe that I solved this problem correctly... (will post below)

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\[\frac{ \cos2\theta }{ \cos \theta -\sin \theta}\]
I know that \[\cos2 \theta = 1-2\sin^2\] so I changed that to the numerator, and then plugged in my limit into the thetas, which is pi/4
I ended up with 0/0 meaning that the limit didn't exist, but I have a feeling I did this wrong.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Try the identity\[\cos 2\theta = \cos^2\theta - \sin^2\theta\]This can be factored and then the fraction can be simplified
Let me clarify... pi/4 = c not the limit. Sorry about that.
\[\frac{\cos ^2\theta-\sin ^2\theta}{\cos \theta-\sin \theta}=\frac{(\cos \theta-\sin \theta)(\cos \theta+\sin \theta)}{\cos \theta-\sin \theta}\]
Then I would just cancel out the like terms in the numerator and the denominator, plug in my c values and solve?
That's right
Oh okay, thank you. :) I guess I'll medal ospreytriple since they responded first? But I'll fan both of you. :)
not to butt in but if you get \[\frac{0}{0}\] it does NOT mean the limit doesn't exist it means you have to do more work
Great to know! I'll keep that in mind next time I get it as an answer.

Not the answer you are looking for?

Search for more explanations.

Ask your own question