A community for students.

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

Abhisar

  • one year ago

Can anyone explain how no. of chiral carbons in β - D + glucose is 5?

  • This Question is Closed
  1. Abhisar
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 1

    @Woodward

  2. Abhisar
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 1

    @Woodward , I just needed you and you came online. O wuv you man :D

  3. anonymous
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    https://upload.wikimedia.org/wikipedia/commons/thumb/b/bb/Beta-D-Glucose.svg/620px-Beta-D-Glucose.svg.png So each of these carbons on the ring have 4 different substituents since even though they might be attached to carbons, those carbons they're attached to don't have the same connectivity! Maybe a smaller example will help, but chiral centers are more than just "is this attached to a carbon or not, for instance, this molecule is chiral: |dw:1441941734903:dw| even though each atom is attached to only carbons, if this helps. I can try to clarify more, since I know I'm kind of vague about this I am not entirely sure what you needed clarification on. :D

  4. Abhisar
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 1

    Actually, I tried finding no. of chiral carbons and every where got the answer 4 with following reason but the actual answer is 5. I don't know how. Your explanation seems to make sense. http://wps.prenhall.com/wps/media/objects/3313/3393159/blb2510.html

  5. Abhisar
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 1

    *No of chiral corbons in glucose molecule

  6. anonymous
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    Ah, the difference is that the linear form of the molecule has 4 and the closed-chain form has 5.

  7. Abhisar
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 1

    Oh, I see... Can you link me something where I can learn how to find chiral carbons in closed chain compound?

  8. anonymous
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    Hmm, I don't know of any off the top of my head. All I can say is that the extra chiral carbon comes as a result of when the ring closes it turns the \(sp^2\) hybridized carbonyl carbon at the aldehyde into an \(sp^3\) carbon, which is really what appears to be the difference between \(\alpha\) and \(\beta\) -D-glucose.

  9. anonymous
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    You should be able to do something similar to how it was done here to determine if the carbons are chiral or not, http://wps.prenhall.com/wps/media/objects/3313/3393159/imag2510/AABAAST0.JPG I can walk you through how to show that each carbon is chiral, or actually if you could draw it out it might be simpler that way to show me how you'd do it so I can help you realize where you're going wrong.

  10. Abhisar
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 1

    Ok, so here it is how I am doing, wait, do you want me tell why I think there are 4 chiral carbons because that's what I understand till this moment. I don't know how to figure it out in closed rings because according to me chiral carbons are those which have four different species attached to them.

  11. anonymous
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    Whichever, just make sure you specify which form you're talking about since the linear and cyclic forms have a different number of chiral carbons. The linear has 4, and the cyclic has 5, so whatever I just said doesn't make sense or you're unsure of just show me how you'd do it I guess.

  12. anonymous
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    Also, here's a mechanism so you can see a little bit how the carbonyl carbon is turned into a chiral carbon, which is where we're getting that extra chiral center from: http://web.campbell.edu/faculty/nemecz/323_lect/sugars/images/Glucose_cycl.jpg I realize you're probably doing biology and don't understand organic chemistry too well so if that confuses you just forget about it haha.

  13. Abhisar
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 1

    Ohh...I get it now......I saw this video https://www.khanacademy.org/science/organic-chemistry/stereochemistry-topic/chirality-r-s-system/v/chirality-center-jay

  14. Abhisar
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 1

    Yes, you are right ;D

  15. Abhisar
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 1

    Thank you very Much!!!! c:

  16. anonymous
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    Cool, glad I could help! :P

  17. greatlife44
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    @woodward great job!

  18. Not the answer you are looking for?
    Search for more explanations.

    • Attachments:

Ask your own question

Sign Up
Find more explanations on OpenStudy
Privacy Policy

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.