anonymous
  • anonymous
What is the missing exponent? 8^-5/(8^-7)^2=8[ ]
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
@Nnesha help again please?
Nnesha
  • Nnesha
you need to know 2 exponent rules \[\huge\rm (x^m)^n=x^{m \times n}\] and the 2nd one \[\huge\rm \frac{ x^m }{ x^n }=x^{m-n}\]when we divide same bases we should subtract their exponents
anonymous
  • anonymous
so for the first one it's -7 times 2 the second one is -5 times -7? @nnesha

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Nnesha
  • Nnesha
first one is right 2nd one you should `subtract` their exponent not multiply them
Nnesha
  • Nnesha
\[\frac{ 8^{-5} }{ 8^{-7 \times 2} }\] -7 times 2 = ?
anonymous
  • anonymous
-14?
Nnesha
  • Nnesha
yes right so \[\frac{ 8^{-5} }{ 8^{-14}}\]
Nnesha
  • Nnesha
now apply 2nd exponent rule
anonymous
  • anonymous
is it -11? I might be wrong
Nnesha
  • Nnesha
here is an example \[\huge\rm \frac{ 2^3 }{ 2^{-3} } =2^{3\color{ReD}{-}(-3)}\]
Nnesha
  • Nnesha
we should subtract their exponents but if the exponents at the denominator is negative then you should add \[\huge\rm \frac{ 2^3 }{ 2^{-3} } =2^{3\color{ReD}{-}(-3)} =2^{3+3}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.