• anonymous
what is the limit when x approaches 0 from the left when intx
  • Stacey Warren - Expert
Hey! We 've verified this expert answer for you, click below to unlock the details :)
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
  • schrodinger
I got my questions answered at in under 10 minutes. Go to now for free help!
  • Owlcoffee
Lateral limits consider only a certain region of the enviroment defined by the tendency, in this case, the left side, which implies "values smaller than". So therefore: \[\lim_{x \rightarrow 0^-}kx\] Will be a limit that considers all the values of x that satisfy the condition \(x<0\) or in more technical terms \(E^-((0-x),0)\) this means "an enviroment with center "0" and radius "x" on the left side. And what are the only values on the real numberline that satisfy that \(x<0\) ? Well those would be the negative numbers, and even infinitely close to x=0 we will have values, therefore we deduce that "x" will have negative values: \[\lim_{x \rightarrow 0^-}k(-x)=-kx\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.