Find the volume bounded by y=4x^3, x+y=5, and x=0 rotated around the x-axis. I used the Washer Method and got π(25-10x+x^2-16x^6)dx [0,4], but I got a ridiculously large number when I solved for the whole thing. The answer is supposed to be 379π/21

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Find the volume bounded by y=4x^3, x+y=5, and x=0 rotated around the x-axis. I used the Washer Method and got π(25-10x+x^2-16x^6)dx [0,4], but I got a ridiculously large number when I solved for the whole thing. The answer is supposed to be 379π/21

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

answer seems fine :p
1 Attachment
  • phi
I used the Washer Method (I assume that means you integrated over dy?) if so, notice you have to break the problem into two integrals because the "right boundary" changes. As Irish shows, it makes more sense to use the shell method.
yeah, i did the other way first and it is bit more of a pain
1 Attachment

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Not the answer you are looking for?

Search for more explanations.

Ask your own question