p, q and r are different prime numbers; a,b and c are positive whole numbers, such as a>b>c; if n = p ^{a} q^{c} r^{b} and m = p ^{b} q^{a} r^{c}, then the greatest common divisor of m and n is :

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

p, q and r are different prime numbers; a,b and c are positive whole numbers, such as a>b>c; if n = p ^{a} q^{c} r^{b} and m = p ^{b} q^{a} r^{c}, then the greatest common divisor of m and n is :

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\[m = p ^{b} q^{a} r ^{c}\] \[n = p^{a}q^{c}r^{b}\]
@misty1212 @calculusxy plz how do i solve this ?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

to illustrate with a simpler problem let's say you have \(2^3 \ 3^5\) and \(2^5 \ 3^2\) then you would go with \(2^3 \ 3^2\) the lowest exponent in each case because 2 and 3 are prime does that help?
oh! there are some proper mathematicians watching now i reckon they'll do this better than me :-)
the options are: a.\[p^{c}q^{b}c^{c}\] b.\[p^{b}q^{b }c^{c}\] c. \[p^{b}q^{c}c^{c}\] d. \[p^{a}q^{c}c^{b}\]
lol here is another hint: since \(a>b\) the greatest common divisor of \(p^a,p^b\) is \(p^b\) just like the greatest common divisor of \(7^3\) and \(7^2\) is \(7^2\)
in other words, just like with actual numbers, pick the lowest exponent
so it the answert is c because that expression has the lowest exponents ?
altought it would be a lot alike to a -.-
i guess it is C after all they have the lowest common exponents of m and n
anyway thanks to all of you :)

Not the answer you are looking for?

Search for more explanations.

Ask your own question