Question

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

|dw:1442085598415:dw|
Could you please help me out @IrishBoy123

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

|dw:1442085754297:dw|
|dw:1442085839354:dw|
it's worth doing this first!
|dw:1442085908400:dw|
IOW, you can do loads of boring subs or you can start spotting these patterns and start doing integration in your head pretty much
|dw:1442086164257:dw|
|dw:1442086191680:dw|
+C
Is this the answer?
|dw:1442086517027:dw| adjustment needed?
\[\sf \int \frac{2x^2}{\sqrt{5+x^3}}dx\implies 2\int \frac{x^2}{\sqrt{5+x^3}}dx \]\[\sf u=5+x^3 ~,~ du = 3x^2dx \implies \frac{du}{3}=x^2dx \]resub. \[\sf \frac{2}{3}\int \frac{du}{u^{1/2}}\]
I finally got the answer
yep @Jhannybean that was exactly how I did it.
I'm getting \(\dfrac{2}{3}\) and @IrishBoy123 is getting \(\dfrac{3}{2}\)?
I got 4/3 (after final simplification)
no! |dw:1442086992183:dw|
Thanks guys tho that was my final attempt
\[\sf 2\int\frac{1}{u^{1/2}} \cdot \frac{du}{3}= \frac{2}{3}\int\frac{du}{u^{1/2}}\]Oh okay
I thought I was making errors.... just woke up.
|dw:1442087204185:dw| |dw:1442087262250:dw| lol!!!!
You spot patterns after you do a whole bunch of boring subs :P It's been years since ive done techniques of integration lol.
@Jhannybean agreed!
alright I believe none of u need anymore medals
Thanks guys

Not the answer you are looking for?

Search for more explanations.

Ask your own question