A community for students.

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

frank0520

  • one year ago

Consider the homogeneous linear 2nd order DE: sin(x) y'' + ln(x) y' + y = 0. Suppose y1 and y2 are solutions. a. Show that y1+y2 is also a solution. b. Show that αy1 is a solution for any real number α c. What does this say about the set of solutions? d. Is the same true for the non-homogeneous DE sin(x) y'' + ln(x) y' + y = 1?

  • This Question is Closed
  1. Empty
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    Where are you stuck? I can help you figure it out.

  2. frank0520
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    I need help on a,b,c and d. for part I started like this: \[\sin(x)y_1'' +\ln(x)y_1'+y_1=0\] \[\sin(x)y_2''+\ln(x)y_2'+y_2=0\] \[\sin(x)y_1''+\sin(x)y_2'' +\ln(x)y_1'+\ln(x)y_2'+y_1+y_2=0\] \[\sin(x)(y_1+y_2)''+\ln(x)(y_1+y_2)'+(y_1+y_2)=0\]

  3. Empty
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    That's correct for the first part!

  4. thomas5267
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 2

    b.\[ \begin{align*} &\phantom{{}={}}\sin(x) (ay_1'') + \ln(x) (ay_1') + ay_1\\ &=a\left(\sin(x) y_1'' + \ln(x) y_1' + y_1\right)\\ &=a(0)\\ &=0 \end{align*} \] c. Look at the axioms of a vector space. d. Try it out yourself.

  5. Not the answer you are looking for?
    Search for more explanations.

    • Attachments:

Ask your own question

Sign Up
Find more explanations on OpenStudy
Privacy Policy

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.