An urn has 5 red balls ,4 black balls,3 blue balls,2 yellow balls and 1 green ball. In how many ways can 5 balls be selected.

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

An urn has 5 red balls ,4 black balls,3 blue balls,2 yellow balls and 1 green ball. In how many ways can 5 balls be selected.

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\(\large \color{black}{\begin{align} & \normalsize \text{An urn has 5 red balls ,4 black balls,3 blue balls,2 yellow balls}\hspace{.33em}\\~\\ & \normalsize \text{and 1 green ball.}\hspace{.33em}\\~\\ & \normalsize \text{In how many ways can 5 balls be selected.}\hspace{.33em}\\~\\ \end{align}}\)
I dnt think this is stars ans bas problem
stars and bars are used to find integer solutions of the equation eg. a+b+c=x

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

well there are no other conditions given like there shuld be atleast 2 yellow ones or something like that so we can consider like u have a total of 15balls nd u need to find out number of ways to select 5balls so it wuld be 15*14*13*11*10 but wait we can have cases like this-|dw:1442129915453:dw| so we are getting similar cases :) nd we need to fix them but how :)
you can write out explicitly the options r = red, b = black , B = blue, y = yellow, g = green r1, r2, r3 , r4, r5 b1, b2, b3 , b4, B1, B2, B3 y1, y2 g there are 5+4+3+2+1 = 15 balls there are 15*14*13*12*11 ways to choose 5 balls. I am assuming order counts because you can select r1,r2,r3,r4,r5 in different ways
yea sry that ws not 15*14*13*11*10 i forgot the 12 it wuld be 15*14*13*12*11
the question is a bit ambiguous . is it asking how many 'different' ways of selecting 5 balls there are
and we have indistinguishable balls
hey same colored balls are identical
answer given is 71
thanks, i will work with this
15*14*13*12*11 this works when all 15 balls are distinct
yea :)
did you get 71 imquert?
nope m still wrkin on it :)
i m frutated by this que from 2 days
:D lets finish off the frustration today :)
hehe see my mod powers :) - http://prntscr.com/8frqsl
it happns to every body
another way to look at this is to list the possible number of colored balls Red = 0,1,2,3,4,5 Black = 0,1,2,3,4 Blue = 0,1,2,3 yellow = 0,1,2 green = 0,1 how many ways can you add up to 5?
starting with Red = 5, we have 5 + 0 + 0 + 0 + 0 4 + 1 + 0 + 0 + 0 4 + 0 + 1 + 0 + 0 4 + 0 + 0 + 1 + 0 4 + 0 + 0 + 0 + 1
then 3 + 2 + 0 + 0 + 0 3 + 0 + 2 + 0 + 0 3 + 0 + 0 + 2 + 0 then list with 3 reds. This is brute force method and long.
'5 + 0 + 0 + 0 + 0 ' means 5 red + 0 black + 0 blue + 0 yellow + 0 green
:D nice question btw
Their should be some trick in this question as it is to be solved in 1-2 min
there are 7 ways to add up to 5 The seven partitions of 5 are: 5 4 + 1 3 + 2 3 + 1 + 1 2 + 2 + 1 2 + 1 + 1 + 1 1 + 1 + 1 + 1 + 1 now count how many ways you can fit these in the boxes, with the restriction that first ball is between 0 and 5 second ball is between 0 and 4, etc
is 7 the answer
The answer is 71 by enumeration, but I have not found a systematical way to do it. If you want to see the list, let me know.
Here's the list of the combinations, first number is the green [0,1], last number is red [0,5]. Perhaps someone can figure out the logic. (0, 0, 0, 0, 5) (0, 0, 0, 1, 4) (0, 0, 0, 2, 3) (0, 0, 0, 3, 2) (0, 0, 0, 4, 1) (0, 0, 1, 0, 4) (0, 0, 1, 1, 3) (0, 0, 1, 2, 2) (0, 0, 1, 3, 1) (0, 0, 1, 4, 0) (0, 0, 2, 0, 3) (0, 0, 2, 1, 2) (0, 0, 2, 2, 1) (0, 0, 2, 3, 0) (0, 0, 3, 0, 2) (0, 0, 3, 1, 1) (0, 0, 3, 2, 0) (0, 1, 0, 0, 4) (0, 1, 0, 1, 3) (0, 1, 0, 2, 2) (0, 1, 0, 3, 1) (0, 1, 0, 4, 0) (0, 1, 1, 0, 3) (0, 1, 1, 1, 2) (0, 1, 1, 2, 1) (0, 1, 1, 3, 0) (0, 1, 2, 0, 2) (0, 1, 2, 1, 1) (0, 1, 2, 2, 0) (0, 1, 3, 0, 1) (0, 1, 3, 1, 0) (0, 2, 0, 0, 3) (0, 2, 0, 1, 2) (0, 2, 0, 2, 1) (0, 2, 0, 3, 0) (0, 2, 1, 0, 2) (0, 2, 1, 1, 1) (0, 2, 1, 2, 0) (0, 2, 2, 0, 1) (0, 2, 2, 1, 0) (0, 2, 3, 0, 0) (1, 0, 0, 0, 4) (1, 0, 0, 1, 3) (1, 0, 0, 2, 2) (1, 0, 0, 3, 1) (1, 0, 0, 4, 0) (1, 0, 1, 0, 3) (1, 0, 1, 1, 2) (1, 0, 1, 2, 1) (1, 0, 1, 3, 0) (1, 0, 2, 0, 2) (1, 0, 2, 1, 1) (1, 0, 2, 2, 0) (1, 0, 3, 0, 1) (1, 0, 3, 1, 0) (1, 1, 0, 0, 3) (1, 1, 0, 1, 2) (1, 1, 0, 2, 1) (1, 1, 0, 3, 0) (1, 1, 1, 0, 2) (1, 1, 1, 1, 1) (1, 1, 1, 2, 0) (1, 1, 2, 0, 1) (1, 1, 2, 1, 0) (1, 1, 3, 0, 0) (1, 2, 0, 0, 2) (1, 2, 0, 1, 1) (1, 2, 0, 2, 0) (1, 2, 1, 0, 1) (1, 2, 1, 1, 0) (1, 2, 2, 0, 0) ('count=', 71)
am i amazed ,how did u use the brute force
When I cannot solve a problem, brute force is required, and the computer is my best friend for that purpose! lol If you use Python, I can send you the code.
ok
Table of number of ways to obtain total no. of balls progressively sum of number of balls 0 1 2 3 4 5 red (5) 1 1 1 1 1 1 black(4) 1 1 1 1 1 (5+4) 1 2 3 4 5 5 blue(3) 1 1 1 1 (5+4+3) 1 3 6 10 14 17 yellow(2) 1 1 1 (5...2) 1 4 10 19 30 41 green(1) 1 1 (5...1) 1 5 14 29 49 71 Number of ways to make the given sum (0 - 5) for given colour combinations. Explanations: The first line of the table enumerates the ways to pick the red balls to get a given total of one to five balls. The next line is similar, but for black balls. The third line is the number of ways to choose x balls (0<=x<=5) when red and black are combined. After that, we add progressively blue, yellow and green. The last line is when there are all 15 balls, with 71 ways to get a total of five balls. Following are some examples: for 5 reds and 4 blacks, there are 1*1=1 way to get a sum of 0 ball 1*1+1*1=2 ways to get 1 ball, ... 1*1+1*1+1*1+1*1+1*1=5 ways to get 4 balls 1*1+1*1+1*1+1*1+1*1=5 ways to get 5 balls The result is shown on the line (5+4) For 5 reds, 4 blacks, and 3 blues, tag on the blues below the line (5+4) and work similarly. 1*1=1 way to get a sum of zero ball. 2*1+1*1=3 ways to get 1 ball, 3*1+2*1+1*1=6 ways to get 2 balls, ... 3*1+4*1+5*1+5*1=17 ways to get a sum of 5 balls. Continuing this way, we have, with all 15 balls, 71 ways to get a sum of exactly 5 balls.

Not the answer you are looking for?

Search for more explanations.

Ask your own question