rishavraj
  • rishavraj
hey wht if two out of three eigen values corresponding to a given matrix A are same. Can we directly conclude tht the eigen vectors aint diagonalisable??
Mathematics
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
Diagonalizability can fail only if there are repeated eigenvalues. However, matrices with repeated eigenvalues may still be diagonalizable ( ex: identity matrix, situations when we have a p dimensional eigenspace corresponding to an eigenvalue with multiplicity p)
rishavraj
  • rishavraj
so its obvious tht if two eigen values r same then the two eigen vectors corresponding to those values will be same :)) thanks @akitav
rishavraj
  • rishavraj

Looking for something else?

Not the answer you are looking for? Search for more explanations.