A community for students.

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

arindameducationusc

  • one year ago

Examples of integration part1

  • This Question is Closed
  1. arindameducationusc
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 9

    \(\Large\color{red}{Examples~of~integration} \) check the below tutorial by @hartnn its just awesome.... http://openstudy.com/study#/updates/50960518e4b0d0275a3ccfba

  2. arindameducationusc
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 9

    referred with this tutorial I will be giving examples. All \(\Large\color{blue}{Serial~no.} \) are according to the above tutorial. just see the above tutorial, check the serial number and you can see the example of the formula.

  3. arindameducationusc
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 9

    \(\Large\color{red}{For~1.} \) example is already in the tutorial. (check it)

  4. arindameducationusc
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 9

    \(\Large\color{red}{2.} \) \[\int\limits_{}^{}\sin (5x+7)= -\frac{ 1 }{ 5 }\cos(5x+7) +C\] C is the arbitrary constant of integration.

  5. arindameducationusc
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 9

    \(\Large\color{red}{3.} \) \[\int\limits_{}^{} e ^{xlog _{e}a} dx, ~a>0, ~a \neq1\] \(\Large\color{blue}{Solution(Soln)} \) \[\int\limits_{}^{}e ^{\log _{e}a ^{x}}dx\] and now using property of log we know \[e ^{\log _{e}}=1\] so we get, \[\int\limits_{}^{}a ^{x}dx\] \[=\frac{ a ^{x} }{ \log _{e}a }+C\]

  6. arindameducationusc
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 9

    \(\Large\color{red}{Q} \) \[\int\limits_{}^{} 10^{x}dx\] \(\Large\color{blue}{Soln} \) \[=\frac{ 10^{x} }{ \log10 }+C\]

  7. arindameducationusc
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 9

    \(\Large\color{red}{Q.} \) \[\int\limits_{}^{}e ^{x}a ^{x}dx\] \(\Large\color{blue}{Soln} \) \[=\int\limits_{}^{}(ae)^{x}dx\] \[=\frac{ (ae)^{x} }{ \log(ae) } + C\]

  8. arindameducationusc
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 9

    \(\Large\color{red}{4.} \) \(\Large\color{red}{Q} \) \[I=\int\limits_{}^{}\frac{ x^{3}+5x^{2}+4x+1 }{ x^{2} } dx\] \(\Large\color{blue}{Soln} \) =\[\int\limits_{}^{}(x+5+\frac{ 4 }{ x }+\frac{ 1 }{ x^{2} } ) dx\] =\[\int\limits_{}^{}xdx+\int\limits_{}^{}5dx+4\int\limits_{}^{}\frac{ 1 }{ x } dx+\int\limits_{}^{}\frac{ 1 }{ x^{2} }dx\] \[=\frac{ x^{2} }{ 2 }+5x+4\log \left| x \right|-\frac{ 1 }{ x }+C\]

  9. arindameducationusc
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 9

    \(\Large\color{red}{Q} \) \[I=\int\limits_{}^{}(\sqrt{x}+\frac{ 1 }{ \sqrt{x} })^{2}dx\] \(\Large\color{blue}{Soln} \)\ \[=\int\limits_{}^{}(x+\frac{ 1 }{ x }+2)dx\] \[=\int\limits_{}^{} xdx+\int\limits_{}^{}\frac{ 1 }{ x}dx+2\int\limits_{}^{}1dx\] =\[\frac{ x ^{2} }{ 2 }+\log \left| x \right|+2x+C\]

  10. arindameducationusc
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 9

    \(\Large\color{red}{5} \) \(\Large\color{red}{Q} \) \[I=\int\limits_{}^{}\sqrt{1-\cos2x}dx\] \(\Large\color{blue}{Soln} \) \[I=\sqrt{1-(1-2\sin ^{2}x)}dx\] \[=\sqrt{2\sin^{2}x}dx\] \[=\sqrt{2}\int\limits_{}^{}sinxdx\] \[=-\sqrt{2}cosx+C\]

  11. arindameducationusc
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 9

    \(\Large\color{red}{6.} \) \(\Large\color{red}{Q} \) \[I=\int\limits_{}^{}\sqrt{1+\cos2x}dx\] \(\Large\color{blue}{Soln} \) \[=\int\limits_{}^{}\sqrt{1+2\cos ^{2}x-1}dx\] \[=\int\limits_{}^{}\sqrt{2\cos ^{2}x}dx\] \[=\sqrt{2}sinx+C\]

  12. arindameducationusc
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 9

    \(\Large\color{red}{5~and~6} \) \(\Large\color{red}{Q} \) \[I=\sqrt{1+\sin2x}dx\] \(\Large\color{blue}{Soln} \) \[I=\sqrt{\sin ^{2}x+\cos ^{2}x+2sinxcosx}dx\] \[I=\int\limits_{}^{}\sqrt{(sinx+cosx)^{2}}dx\] \[I=\int\limits_{}^{}(sinx+cosx)dx\] \[I=\int\limits_{}^{}sinxdx+\int\limits_{}^{}cosxdx\] \[=-cosx+sinx+C\]

  13. zzr0ck3r
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    Also, they make calculus books full of examples.

  14. arindameducationusc
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 9

    \(\Large\color{red}{7.} \) \(\Large\color{red}{Q} \) \[\int\limits_{}^{}\tan2x-\tan(x-\theta)-\tan(x+\theta)~dx\] \(\Large\color{blue}{Soln} \) \[=-1/2\log \cos2x+logcos(x-\theta)+logcos(x+\theta)+C\] \[=1/2\log \sec2x-logsec(x-\theta)-logsec(x+\theta)+C\]

  15. arindameducationusc
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 9

    \(\Large\color{red}{8.} \) \(\Large\color{red}{Q} \) \[\int\limits_{}^{}cosa+\cot(x-a)sina~dx\] \(\Large\color{blue}{Soln} \) \[=cosa \int\limits1.dx+sina \int\limits \cot(x-a)dx\] \[=xcosa+sina \log \left| \sin(x-a) \right|+C\] \[=xcosa-sinalog \left| cosec(x-a) \right|+C\]

  16. arindameducationusc
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 9

    \(\Large\color{red}{9.} \) \(\Large\color{red}{Q} \) \[\int\limits \frac{ 1 }{ \sqrt{1+\cos2x} }dx\] \(\Large\color{blue}{Soln} \) \[=\frac{ 1 }{ \sqrt{2\cos ^{2}x} }dx\] \[=\frac{ 1 }{ \sqrt{2} }\int\limits \frac{ 1 }{ \sqrt{\cos ^{2}x} }dx\] \[=\frac{ 1 }{ \sqrt{2} }\int\limits secx dx \] //as 1/cosx=secx and the square and squareroot cancels. \[=\frac{ 1 }{ \sqrt{2} }\log \left| secx+tanx \right|+C\]

  17. arindameducationusc
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 9

    \(\Large\color{red}{10.} \) \(\Large\color{red}{Q} \) \[\int\limits \frac{ 1 }{ \sqrt{1-cosx} }\] \(\Large\color{blue}{Soln} \) \[=\int\limits \frac{ 1 }{ \sqrt{2\sin ^{2}\frac{ x }{ 2 }} }dx\] \[\frac{ 1 }{ \sqrt{2} }\int\limits cosec \frac{ x }{ 2 }dx\] // 1/sin= cosec and squareroot and square cancels. \[=\frac{ 2 }{ \sqrt{2} }\log \left| cosec \frac{ x }{ 2 }-\cot \frac{ x }{ 2 } \right|+C\] // denominator of x is 2 so, apply second formula (2). \[=\frac{ \sqrt{2} }{ 1 }\log \left| cosec \frac{ x }{ 2 }-\cot \frac{ x }{ 2 } \right|+C\]

  18. arindameducationusc
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 9

    \(\Large\color{red}{11.} \) \(\Large\color{red}{Q} \) \[\int\limits \tan ^{2}xdx\] \(\Large\color{blue}{Soln} \) \[=\int\limits \sec ^{2}x-1 dx\] \[=tanx-x+C\]

  19. arindameducationusc
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 9

    \(\Large\color{red}{12.} \) \(\Large\color{red}{Q} \) \[\int\limits \cot ^{2}x dx\] \(\Large\color{blue}{Soln} \) \[=\int\limits cosec ^{2}x-1 dx\] \[=-cotx-x+C\]

  20. Not the answer you are looking for?
    Search for more explanations.

    • Attachments:

Ask your own question

Sign Up
Find more explanations on OpenStudy
Privacy Policy

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.