anonymous
  • anonymous
ques
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Isn't Green's Theorem just a special case of Stokes' Theorem?? from Green's Theorem we have \[\oint_\limits{C}(\phi dx+\psi dy)=\iint_\limits{R}(\frac{\partial \psi}{\partial x}-\frac{\partial \phi}{\partial y})dxdy\] Now if we let \[\vec F=\phi \hat i+\psi \hat j+0 \hat k\] and \[d \vec r=dx \hat i+dy \hat j+dz \hat k\] therefore we can write \[\phi dx+\psi dy=\vec F. d \vec r\] Then we can write \[\frac{\partial \psi}{\partial x}-\frac{\partial \phi}{\partial y}\] as \[\hat k.(\vec \nabla \times \vec F)\] To confirm For a scalar triple product we have \[\vec a.(\vec b \times \vec c) =\begin{vmatrix}a_{x} & a_{y} & a_{z} \\ b_{x} & b_{y} & b_{z} \\ c_{x} & c_{y} & c_{z} \end{vmatrix}\] So, if we expand we get \[\det=\begin{vmatrix}0 & 0 & 1 \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial }{\partial z} \\ \phi & \psi & 0 \end{vmatrix}\] \[\det=\begin{vmatrix}\frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ \phi & \psi\end{vmatrix}=\frac{\partial \psi}{\partial x}-\frac{\partial \phi}{\partial y}\] So we have \[\oint_\limits{C} \vec F.d \vec r=\iint_\limits{R}[(\vec \nabla \times \vec F). \hat k]dxdy\] From Stokes theorem we have \[\oint_\limits{C} \vec F . d \vec r=\iint_\limits{S}[(\vec \nabla \times \vec F).\hat n]ds\] Now we can write \[ds=\frac{dxdy}{|(\pm \hat k).\hat n|}=\frac{dxdy}{\hat k . \hat n}\] and when \[\hat n=\hat k\] we have \[\oint \vec F . d \vec r=\iint_\limits{R}[(\vec \nabla \times \vec F).\hat k]\frac{dxdy}{\hat k . \hat k}=\iint_\limits{R}[(\vec \nabla \times \vec F).\hat k]dxdy\] So it's a special case when we consider the projection of S on xy-plane(R) and of course for a surface in xy plane, it's normal will be along z or -z axis. It is essentially a transformation of Stokes Theorem from 3 dimensional surface to a 2 dimensional surface

Looking for something else?

Not the answer you are looking for? Search for more explanations.