anonymous
  • anonymous
Can you please show me how to solve these and send me the solution on skype? (my skype ID is golemboy1 from Brasov Romania) http://tinypic.com/r/nl1r93/8
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
thomas5267
  • thomas5267
\[ \sum_{n=1}^\infty \frac{n}{n^2+1}\geq\sum_{n=1}^\infty \frac{n}{n^2+n}=\sum_{n=1}^\infty \frac{1}{n+1}=\sum_{n=2}^\infty \frac{1}{n}\\ \] Harmonic series diverges.
thomas5267
  • thomas5267
\[ \sum_{n=1}^\infty\frac{n}{n^3+1}\leq\sum_{n=1}^\infty\frac{n}{n^3}=\sum_{n=1}^\infty\frac{1}{n^2}\\ \int_1^\infty \frac{1}{n^2}\,dn=\left[-\frac{1}{n}\right]_1^\infty=1\\ \sum_{n=1}^\infty\frac{n}{n^3+1} \text{ converges.} \]
thomas5267
  • thomas5267
\[ \sum_{n=1}^\infty\frac{n^2}{2^n}\\ \begin{align*} &\phantom{{}={}}\lim_{n\to\infty}\frac{(n+1)^2}{2^{n+1}}\frac{2^n}{n^2}\\ &=\lim_{n\to\infty}\frac{n^2+2n+1}{2n^2}\\ &=\frac{1}{2} \end{align*} \\ \sum_{n=1}^\infty\frac{n^2}{2^n}\text{ converges and trivially converges absolutely since all terms are positive.} \]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

thomas5267
  • thomas5267
18a and b are direct calculation so I will leave this for you.
thomas5267
  • thomas5267
\[ \sum_{n=1}^\infty\frac{n+1}{2n+1}\geq\sum_{n=1}^\infty\frac{n+1}{2n+2}=\frac{1}{2}\sum_{n=1}^\infty1\\ \text{You tell me whether this converges or not.}\\ \sum_{n=1}^\infty\frac{1}{2n}=\frac{1}{2}\sum_{n=1}^\infty\frac{1}{n}\\ \text{Harmonic series does not converge. Wikipedia the proof.}\\ \sum_{n=1}^\infty\frac{2^n}{n}\geq\sum_{n=1}^\infty\frac{2^n}{2^n}=\sum_{n=1}^\infty1\\ \text{You tell me whether this converges or not.} \]

Looking for something else?

Not the answer you are looking for? Search for more explanations.