Prove - tan^2(x) + sec^2(x) = 1 by working on one side to match the other using identities.

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Prove - tan^2(x) + sec^2(x) = 1 by working on one side to match the other using identities.

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\[- \tan^2x + \sec^2x = 1\]
\[- \tan^2x + \sec^2x = 1\]
sec^2 theta = what ? remember the identity ?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

1/cos^2x
well that's reciprocal of sec but it's okay we can use that too!! tan^2 =what ?
sin^2x/cos^2x
or 1/cot^2x
yes right so replace tan and sec with that \[\huge\rm -\frac{ \sin^2x }{ \cos^2x } +\frac{ 1 }{ \cos^2x}\] find the common denominator
cos^2x?
ohh well not gonna work should use the identity i guess
You could also use the fact that \(\sf sec^2(\theta) = tan^2(\theta) +1\) and then substitute this in place of \(\sf \sec^2(\theta)\)
thats true, thanks
\[\sf -tan^2(\theta)+\sec^2(\theta) = 1\]\[\sf -\tan^2(\theta) +\color{red}{\tan^2(\theta) +1}=1\]
Wow... The one identity I didn't think of solved it so easily. Thank you!
\[\huge\rm \frac{ -\sin^2x +1}{ \cos^2 }\] use the special identity sin^2x+cos^2x =1 solve for cos^2
No problem :)
here you can copy these identities http://www.math.com/tables/trig/identities.htm you weren't familiar with this so that's why i thought better to write interms of sin and cos
That's a good way to approach it too. @Nnesha :)
Thanks that will help too @Nnesha
yw :=)

Not the answer you are looking for?

Search for more explanations.

Ask your own question