anonymous
  • anonymous
Write the partial fraction decomposition of the rational expression.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
http://assets.openstudy.com/updates/attachments/5224e4dbe4b0750826e245ae-gponce28-1378149870417-f1q1g1.jpg
anonymous
  • anonymous
@Nnesha
hartnn
  • hartnn
know how to start?? \(\large \dfrac{A}{x}+\dfrac{B}{x-2}+\dfrac{C}{x-4}\)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
what is that
hartnn
  • hartnn
partial fraction decomposition of your expression. once you find A,B,C you're done
hartnn
  • hartnn
\(\large \dfrac{18x^2 -68x+24}{x(x-2)(x-4)} = \dfrac{A}{x}+\dfrac{B}{x-2}+\dfrac{C}{x-4}\)
hartnn
  • hartnn
now simplify the right side, so that it has one common denominator
hartnn
  • hartnn
like 1/a + 1/b = (b+a)/ab
hartnn
  • hartnn
let me give you a start denominator = x(x-2)(x-4) numerator = A (x-2)(x-4) + B.................
anonymous
  • anonymous
im so cunfused
hartnn
  • hartnn
have you solved a similar problem before?
anonymous
  • anonymous
no i just srted this class
hartnn
  • hartnn
too early to take that example then
hartnn
  • hartnn
start with something easier \(\dfrac{2x+3}{(x+1)(x+2)} \)
anonymous
  • anonymous
ooh;
hartnn
  • hartnn
to decompose that into partial fractions means, we need to have fractions with linear denominators \(\dfrac{2x+3}{(x+1)(x+2)} = \dfrac{A}{(x+1)}+\dfrac{B}{(x+2)}\)
hartnn
  • hartnn
then find A,B with any method that you prefer. I tried to discuss One of the method earlier
hartnn
  • hartnn
taking a common denominator on right side \(\dfrac{A}{(x+1)}+\dfrac{B}{(x+2)} = \dfrac{A(x+1)+B(x+2)}{(x+1)(x+2)}\) makes sense?

Looking for something else?

Not the answer you are looking for? Search for more explanations.