clara1223
  • clara1223
find the limit as x approaches 0 of (2x^2)/(tan^2)(9x)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
let me guess, no l'hopital?
clara1223
  • clara1223
not yet
thomas5267
  • thomas5267
\[ \lim_{x\to0}\frac{2x^2}{\tan^2(9x)}? \]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

clara1223
  • clara1223
yes
anonymous
  • anonymous
does it help to know that \[\lim_{x\to 0}\frac{x}{\tan(x)}=1\]?
anonymous
  • anonymous
by which i really mean, can you use that?
clara1223
  • clara1223
Yes we can use that, I'm just not sure how to get it to look like that
anonymous
  • anonymous
algea bra pull out the 2, make a product out of it
clara1223
  • clara1223
could I also pull out the 9?
clara1223
  • clara1223
to make a product of 2/9?
anonymous
  • anonymous
no the 9 is inside the tangent, but you can multiply top and bottom by 9
anonymous
  • anonymous
or maybe you need 81 since there are two of them
anonymous
  • anonymous
\[\frac{2}{81}\frac{9x}{\tan(9x)}\times \frac{9x}{\tan(9x)}\]
clara1223
  • clara1223
so the answer is 2/81 x 1 x 1?
anonymous
  • anonymous
yup
thomas5267
  • thomas5267
\[ \begin{align*} &\phantom{{}={}}\lim_{x\to0}\frac{2x^2}{\tan^2(9x)}\\ &=2\left(\lim_{x\to0}\frac{x}{\tan(9x)}\right)^2\\ &=2\left(\lim_{x\to0}\frac{x\cos(9x)}{\sin(9x)}\right)^2\\ &=2\left(\lim_{x\to0}\frac{x}{\sin(9x)}\right)^2\left(\lim_{x\to0}\cos(9x)\right)^2\\ &=2\left(\lim_{x\to0}\frac{1}{\frac{\sin(9x)}{x}}\right)^2\\ &=2\left(\frac{1}{\lim_{x\to0}\frac{\sin(9x)}{x}}\right)^2\\ &=2\left(\lim_{x\to0}\frac{\sin(9x)}{x}\right)^{-2}\\ &=2\left(\lim_{x\to0}\frac{9\sin(9x)}{9x}\right)^{-2}\\ &=2\left(9\lim_{x\to0}\frac{\sin(9x)}{9x}\right)^{-2}\\ &=2\left(9\right)^{-2}\\ &=\frac{2}{81} \end{align*} \]

Looking for something else?

Not the answer you are looking for? Search for more explanations.