Is the set \(\{z in C : z ~is~ real~~ and ~~0\leq z <1\}\) closed or open? Please, help

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Is the set \(\{z in C : z ~is~ real~~ and ~~0\leq z <1\}\) closed or open? Please, help

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

I know it is not closed nor open but I am not confident on the proof For not open: let z =0, \(B(0,\varepsilon) \) contains points \(\notin \) the set, hence it is not open
Unless I'm mistaken, this set is exactly the same as the interval \([0,1)\subset\mathbb{R}\), isn't it?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

yes
If I remember it right, a closed set is a set that contains its limits/accumulation points.
We use the complement set of the given set is open , hence the set is closed
Well, it's been much longer than I thought... I'm afraid I won't be able to help much unless I spend quite a bit of time reviewing. A few others might be able to assist you. @ganeshie8 @thomas5267
It's ok, thanks for being here. :)
Closed I guess. Let \(S=\{z:z \in \mathbb{R} \land 0\leq z <1\}\). Let \(\epsilon\) be the minimum distance from a \(x\) in \(S'\) and \(S\). Such \(\epsilon\) should work.
Let \(x\in S'\). For \(0\leq \operatorname{Re}(x) \leq1,\,\epsilon=\operatorname{Im}(x)\). For \(\operatorname{Re}(x)>1,\,\epsilon=|x-1|\). For \(\operatorname{Re}(x)< 0,\,\epsilon=|x|\).

Not the answer you are looking for?

Search for more explanations.

Ask your own question