anonymous
  • anonymous
Find the center (h, k) and the radius r of the circle 2 x^2 - 6 x +2 y^2 + 9 y - 3 = 0 .
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
zzr0ck3r
  • zzr0ck3r
You need to complete the square twice. I will do one of them, \[2 x^2 - 6 x +2 y^2 + 9 y - 3 = 0\\2x^2-6x+2y^2+9y=3\\2(x^2+3x)+2y^2+9y=3\\2(x+\frac{3}{2})^2+2y^2+9y=3+2(\frac{3}{2})^2\]
anonymous
  • anonymous
why is it 3/2?
zzr0ck3r
  • zzr0ck3r
Equation of a circle is \[(x-h)^2+(y-k)^2=r^2\] Where \((h,k)\) is the center and \(r\) is the radius. Yuu have to complete the square twice. \[2 x^2 - 6 x +2 y^2 + 9 y - 3 = 0 \\2x^2-6x+2y^2+9y=3 \\2(x^2-3x)+2(y^2+\frac{9}{2}y)=3 \\2(x-\frac{3}{2})^2+2(y+\frac{9}{4})^2=3+2(\frac{3}{2})^2+2(\frac{9}{4})^2=\frac{141}{8}\\\\(x-\frac{3}{2})^2+(y+\frac{9}{4})^2=\frac{141}{16}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
ohhh okay that makes a lot of sense..
anonymous
  • anonymous
wait, ive tried it again but for radius i got 117/8. I tried to enter both but none of the radius were right @zzr0ck3r
zzr0ck3r
  • zzr0ck3r
The radius would be, according to the formula, \(r=\sqrt{\frac{141}{16}}=\frac{\sqrt{141}}{4}\).

Looking for something else?

Not the answer you are looking for? Search for more explanations.