anonymous
  • anonymous
Describe each of the following properties of the graph of the Cosine Function, f(theta) = cos(theta) and relate the property to the unit circle definition of cosine.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
carlyleukhardt
  • carlyleukhardt
f(theta) = cos(theta) The cosine function reaches a maximum of +1 and a minimum of -1. Therefore, its amplitude is 1. The period is at what theta value the function repeats itself. The period for cosine and sine function is 2(pi). Domain means what values are allowed for theta. There is no restriction. Theta can be: -infinity < theta < infinity. Or in interval notation, the domain is: (-infinity, infinity) Range, like we mentioned before, the cosine function has a minimum of -1 and a maximum of +1. Range is: [-1, 1] x-intercepts is where the curve cuts/touches the x-axis. Cosine function crosses the x-axis at pi/2, 3pi/2, 5pi/2, .... on the positive side and -pi/2, -3pi/2, -5pi/2, ... on the negative side. Or in general: plus/minus n*pi + pi/2 where n = 0, 1, 2, 3, ...

Looking for something else?

Not the answer you are looking for? Search for more explanations.