Adi3
  • Adi3
Will medal Please help. g(x) = (x)/x-5 (i) find g^-1(x) (ii) find g(6) and g^-1(1)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Adi3
  • Adi3
@butterflydreamer
Adi3
  • Adi3
@sammixboo @ganeshie8
Adi3
  • Adi3
@fishejac000

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
yes
butterflydreamer
  • butterflydreamer
oh gosh xD I always get confused when i do inverse functions. Firstly, let's start off with our function: \[g(x) = \frac{ x }{ x - 5 }\] Rename g(x) as "y" \[y = \frac{ x }{ x - 5}\] Multiply both sides by (x - 5) \[y (x - 5) = x\] Expand . \[xy - 5y = x\] move all the x's to one side. \[xy - x = 5y\] Factorise out the "x". \[x ( y - 1) = 5y\] Make "x" the subject. \[x = \frac{ 5y }{ y - 1}\] Now to find the inverse, simply swap the x's with y's and vice versa :) Then rename the function as it's inverse \[g ^{-1} (x)\]
Adi3
  • Adi3
so i get \[\left(\begin{matrix}5x \\ x-1\end{matrix}\right)\]
butterflydreamer
  • butterflydreamer
er.. if that's a fraction then yes LOL. \[g^{-1} (x) = \frac{ 5x }{ x-1 } \]
Adi3
  • Adi3
yes, what about the (ii) one
butterflydreamer
  • butterflydreamer
For part (II). We know that \[g(x) = \frac{ x }{ x - 5 }\] so to find g(6) sub x = 6 and we get: \[g(6) = \frac{ 6 }{ 6 - 5 } = ?\] Do the same for g^-1(x) but sub x = 1 \[g^{-1} (x) = \frac{ 5x }{ x-1} \rightarrow g^{-1} (1) = \frac{ 5(1) }{ 1 - 1 } = ?\]
Adi3
  • Adi3
5
Adi3
  • Adi3
how about the g^-1(1)
anonymous
  • anonymous
5 give me my medal
butterflydreamer
  • butterflydreamer
?? take a look at what i typed in my prev. post :) i showed you both g(6) and g^-1 (1)

Looking for something else?

Not the answer you are looking for? Search for more explanations.