anonymous
  • anonymous
the midpoints of UV are (5,-11). The coordinates of one endpoint are U(3,5). find the coordinates of endpoint V. I don't understand this at all :?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
jdoe0001
  • jdoe0001
have you covered the midpoint formula yet?
anonymous
  • anonymous
yes, |dw:1442358085631:dw|
anonymous
  • anonymous
(5, -11)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

jdoe0001
  • jdoe0001
right so... we know the MidPoint is (5,-11) the whole segment is UV we know what U is, is (3,5) we dunno what V is so one sec
anonymous
  • anonymous
|dw:1442358296247:dw|
anonymous
  • anonymous
|dw:1442358320009:dw|
anonymous
  • anonymous
|dw:1442358350329:dw|
anonymous
  • anonymous
|dw:1442358362868:dw|
anonymous
  • anonymous
|dw:1442358425571:dw|
anonymous
  • anonymous
|dw:1442358469597:dw|
anonymous
  • anonymous
|dw:1442358487776:dw|
jdoe0001
  • jdoe0001
\(\bf \textit{middle point of 2 points }\\ \quad \\ \begin{array}{lllll} &x_1&y_1&x_2&y_2\\ % (a,b) &U({\color{red}{ 3}}\quad ,&{\color{blue}{ 5}})\quad % (c,d) &V({\color{red}{ V_x}}\quad ,&{\color{blue}{ V_y}}) \end{array}\qquad % coordinates of midpoint \left(\cfrac{{\color{red}{ x_2}} + {\color{red}{ x_1}}}{2}\quad ,\quad \cfrac{{\color{blue}{ y_2}} + {\color{blue}{ y_1}}}{2} \right) \\ \quad \\ \left(\cfrac{{\color{red}{ V_x}} + {\color{red}{ 3}}}{2}\quad ,\quad \cfrac{{\color{blue}{ V_y}} + {\color{blue}{ 5}}}{2} \right)=(5,-11)\qquad \textit{that means then} \\ \quad \\ \cfrac{{\color{red}{ V_x}} + {\color{red}{ 3}}}{2}=5\qquad and\qquad \cfrac{{\color{blue}{ V_y}} + {\color{blue}{ 5}}}{2}=-11 \\ \quad \\ solve\ for\ V_x\ and\ V_y\ then\)

Looking for something else?

Not the answer you are looking for? Search for more explanations.