anonymous
  • anonymous
Let f(x) = 4x + 3 and g(x) = -2x + 5. Find (f)(g)(5) a. 23 b. –41 c. –17 d. –5
Algebra
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
make x=5 in both f(x) and g(x) then multiply them that's it do it
anonymous
  • anonymous
thats where im confused at, the actual multipling both of them , can u show me ..?
jdoe0001
  • jdoe0001
multiply, the same way you would if you were dealing with two digits pick only 1 term, multiple times all others on the other group pick another term, and do the same then simplify

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
f(x) and g(x) into (f)(g)(5) is multiplying right? You don't mean f(g(x))? If not, you multiply the equations while inputting 5 for x. 4(5) + 3 times -2(5) + 5.
jdoe0001
  • jdoe0001
(a + b) * (c + d) a * c a* d then b * c b * d add them up, simplify
anonymous
  • anonymous
nah i dont mean that , u got it , but okayy i see what yall are sayin , appreciate it
jdoe0001
  • jdoe0001
\(\bf f(x) = 4x + 3 \qquad g(x) = -2x + 5 \\ \quad \\ (f)(g)(5)\implies f({\color{brown}{ 5}})\cdot g({\color{brown}{ 5}})\implies (4({\color{brown}{ 5}})+3)\cdot (-2({\color{brown}{ 5}})+5) \) even simpler

Looking for something else?

Not the answer you are looking for? Search for more explanations.