what is the difference between a collinear point and a coplanar point

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

what is the difference between a collinear point and a coplanar point

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Just as collinear points all lie on a straight line, in the three dimensional world, when a set of points all lie on the same plane, they are called coplanar.
Here this is pretty cool :) http://www.mathopenref.com/collinear.html
\(~~~~~~~~~~~~~~~~~~~~~~~~~~\Huge{\color{red}{\heartsuit}\color{orange}{\bigstar}\color{yellow}{\heartsuit}\color{green}{\bigstar}\color{blue}{\heartsuit}\color{purple}{\bigstar}\color{hotpink}{\heartsuit}}\)\(\Huge\bf\color{#FF0000}W\color{#FF4900}e\color{#FF9200}l\color{#FFDB00}c\color{#FFff00}o\color{#B6ff00}m\color{#6Dff00}e\color{#24ff00}~\color{#00ff00}t\color{#00ff49}o\color{#00ff92}~\color{#00ffDB}O\color{#00ffff}p\color{#00DBff}e\color{#0092ff}n\color{#0049ff}S\color{#0000ff}t\color{#2400ff}u\color{#6D00ff}d\color{#B600ff}y\color{#FF00ff}!\)\(~~~~~~~~~~~~~~~~~~~~~~~~~~\Huge{\color{red}{\heartsuit}\color{orange}{\bigstar}\color{yellow}{\heartsuit}\color{green}{\bigstar}\color{blue}{\heartsuit}\color{purple}{\bigstar}\color{hotpink}{\heartsuit}}\)\(\Large\bf\color{Lime}{Please,\ don't\ hesitate\ to\ ask\ questions!}\)\(\Large\bf\color{magenta}{We're\ here\ to\ help!}\Large\color{magenta}{\ddot\smile}\)

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Not the answer you are looking for?

Search for more explanations.

Ask your own question