DF001
  • DF001
What is a base in binary?
Computer Science
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions.

DF001
  • DF001
What is a base in binary?
Computer Science
katieb
  • katieb
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

DF001
  • DF001
Something like |dw:1442367775513:dw|
anonymous
  • anonymous
Not sure what you mean. The base in binary is 2. The decimal system is based on base 10. What you drew there looks like it can mean 10 in base 12, which would be equal to 12 in decimal base. So for base 10, you have digits 0,1,2,3,4,5,6,7,8,9 each digit place is base^place but starting from place = zero so 10^n.... 10^2...10^1...10^0 923 in base 10 is 9 digit * 10^2 + 2 digit * 10^1 + 3 digit * 10^0 xyz in base b is x digit * b^2 + y digit * b^1 + z digit * b^0 so 10 in base 12 = 1 * 12^1 + 0 * 12^0 = 12 in base 10|dw:1442386650304:dw| 10 in base 2 = 1 * 2^1 + 0 * 2^0 = 2 in base 10

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Looking for something else?

Not the answer you are looking for? Search for more explanations.