Astrophysics
  • Astrophysics
Elementary integral problems
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Astrophysics
  • Astrophysics
|dw:1442388808400:dw|
Astrophysics
  • Astrophysics
http://puu.sh/kd3Dz/a5f1d4e81e.png if it's not clear enough
Astrophysics
  • Astrophysics
|dw:1442388847137:dw| so far...maybe these can be a little tricky

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Empty
  • Empty
Oooh damn nice. I think 21 is kinda famous, or at least it looks hard. I don't know about the other one if that one's gonna be easy or hard. I'm gonna guess you complete the square for that one or something.
Astrophysics
  • Astrophysics
Maybe I'll post solutions once I'm done all of them, just for fun
imqwerty
  • imqwerty
sry astro i i havent yet given the answer to that quadrilateral question :) i will do that after some time 2weeks ig :) hehe :)
Empty
  • Empty
Ah I just figured out 12 I think, but 21... Hmmm... I'll have to try IBP maybe but I'm kinda scared to lol
Astrophysics
  • Astrophysics
|dw:1442389097067:dw| part 2 http://puu.sh/kd3Qd/129ef4383c.png
Astrophysics
  • Astrophysics
Yeah try what ever one you like out lol
Jhannybean
  • Jhannybean
\[\sf \#12 \\ \\ \int \frac{x}{x^4+x^2+1}dx\]
Astrophysics
  • Astrophysics
Want to know how?
Jhannybean
  • Jhannybean
No, not yet
nincompoop
  • nincompoop
font looks familiar
Jhannybean
  • Jhannybean
You have an x at the top and you have different "variations" of x at the bottom
Astrophysics
  • Astrophysics
Stewart calc nin lol
Jhannybean
  • Jhannybean
Wouldnt a u-sub work?/
nincompoop
  • nincompoop
I know ... LOL
Jhannybean
  • Jhannybean
Like whats the easiest way of making the top a derivative of something? now I know you're either going to u-sub \(\sf x^2\) and \(\sf x^4\)
Astrophysics
  • Astrophysics
Hint: \[\sf \#12 \\ \\ \int\limits \frac{x}{(x^2)^2+x^2+1}dx\]
Jhannybean
  • Jhannybean
OKAY!
nincompoop
  • nincompoop
omg why did you give a hint
Jhannybean
  • Jhannybean
\[ u=x^2~,~ du = 2xdx\]\[2\int\frac{du}{(u)^2+u+1}\]
Astrophysics
  • Astrophysics
\[\checkmark \]
nincompoop
  • nincompoop
LOLLLLL go jhanny go jhanny aren't you supposed to be doing chemistry?
Jhannybean
  • Jhannybean
.......... yeah
nincompoop
  • nincompoop
I am a sober now, so I can help
zzr0ck3r
  • zzr0ck3r
good old Stewart
IrishBoy123
  • IrishBoy123
#21 \(\int arctan \sqrt{x} \,\, dx\) |dw:1442396993523:dw| \(\frac{1}{2}x^{-1/2}dx = 2 \tan \theta \sec^2 \theta \, d\theta \) \(dx = 2 \tan \theta \ \sec^2 \theta \, d\theta \) [looking do-able already] \(\implies \int \theta . 2 \tan \theta \ \sec^2 \theta \, d\theta\,\, dx\) [parts] \(u = \theta, u' = 1, v'= 2 \tan \theta \ \sec^2, v = \tan^2 \theta \) and that's most of it
anonymous
  • anonymous
\[\int\limits_{-1}^{1} \frac{ e ^{arc \tan y} }{ 1+y^2 }dy\] \[put ~\tan^{-1} y=t,\frac{ dy }{ 1+y^2 }=dt\] when y=-1,\[\tan^{-1} \left( -1 \right)=t,t= -\frac{ \pi }{ 4 }\] when y=1,\[t=\frac{ \pi }{ 4 }\] \[I=\int\limits_{-\frac{ \pi }{ 4 }}^{\frac{ \pi }{ 4 }}e^tdt=e^t|-\frac{ \pi }{ 4 }\rightarrow \frac{ \pi }{ 4 }\] \[=e ^{\frac{ \pi }{ 4 }}-e ^{-\frac{ \pi }{ 4 }}\]
anonymous
  • anonymous
17.\[I=\int\limits_{0}^{\pi}t \cos ^2t~dt=\int\limits_{0}^{\pi}\left( \pi-t \right)\cos ^2\left( \pi-t \right)dt\] \[=\int\limits_{0}^{\pi}\pi \cos ^2t~ dt-\int\limits_{0}^{\pi}t~\cos ^2t~dt=\pi \int\limits_{0}^{\pi}\left( \frac{ 1+\cos 2t }{ 2 } \right)dt-I\] \[=\pi \frac{ 1 }{ 2 }\int\limits_{0}^{\pi}\left( 1+\cos 2t \right)dt\] \[I=\frac{ \pi }{ 4 }?\]
anonymous
  • anonymous
31.put \[x=\cos \theta,dx=-\sin \theta~d \theta \]
anonymous
  • anonymous
41.\[I=\int\limits \theta \tan ^2\theta d \theta=\int\limits \theta \left( \sec ^2\theta-1 \right)d \theta =\int\limits \theta \sec ^2\theta d \theta -\frac{ \theta^2 }{ 2 }+c\] integrate by parts
anonymous
  • anonymous
45\[\int\limits x^5e ^{-x^3}dx=\int\limits x^3e ^{-x^3}x^2dx\] put\[x^3=t,3x^2dx=dt\] ?
anonymous
  • anonymous
48\[I=\int\limits \frac{ dx }{ x \sqrt{4x+1} }\] put\[x=\frac{ 1 }{ t },dx=-\frac{ 1 }{ t^2 }dt\] \[I=\int\limits \frac{ \frac{ -1 }{ t^2 }dt }{ \frac{ 1 }{ t }\sqrt{\frac{ 4 }{ t }+1} }=-\int\limits \frac{ dt }{\sqrt{4+t}=? }\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.