If ƒ(x ) = x 2 + 1 and g(x ) = 3x + 1, find 2 · ƒ(4).

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

If ƒ(x ) = x 2 + 1 and g(x ) = 3x + 1, find 2 · ƒ(4).

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\(\large\color{purple}{ \displaystyle f(x)=x^2+1 }\) \(\large\color{brown}{ \displaystyle g(x)=3x+1 }\) To find \(2\cdot f(2)\) you don't need the \(g(x)\). Just, plug in 2 instead of x into the \(f(x)\), and then multiply the result times two.
4*

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Ok, if I wanted to find: \(4\cdot f(3)\) then this is what I would do: \(\large\color{black}{ \displaystyle f(x)=x^2+1 }\) Plug in 3 instead of x: \(\large\color{black}{ \displaystyle f(\color{red}{3})=\color{red}{3}^2+1 }\) I know that \(3^2=9\), so I can write that: \(\large\color{black}{ \displaystyle f(3)=9+1 }\) And then, obviously, 9+1=10, so this is what I get for \(f(3)\). \(\large\color{black}{ \displaystyle f(3)=10 }\) Now, I have to multiply: I am asked to find \(4 \cdot f(3)\), and since I know that \(f(3)=10\), I can just go ahead and apply that (substitute 10 for f(3) ): \(\large\color{black}{ \displaystyle 4\cdot f(3)=4 \cdot 10 = 40 }\)
(hope this is a helpful example)
i got an answer that wasnt one of the options
what did you get ?
5.3
That is not possible
\(\large\color{black}{ \displaystyle f(x)=x^2+1 }\) \(\large\color{black}{ \displaystyle f(4)=\bf ? }\)
i said i did it wrong then i redid it and got it right

Not the answer you are looking for?

Search for more explanations.

Ask your own question