Loser66
  • Loser66
Using Euclid's proof that there are infinitely many primes, show that the nth prime p_n does not exceed \(2^{2^{n-1}}\) whenever n is a positive integer. Conclude that when n is a positive integer, there are at least n+1 primes less than \(2^{2^{n}}\) Please, help
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Loser66
  • Loser66
@ganeshie8
ganeshie8
  • ganeshie8
Hey!
anonymous
  • anonymous
still need help ?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Loser66
  • Loser66
Yes, I do. but it is 11 pm now. I am asleep. If you can put the solution here, it would be great. I am sorry for not staying to get help. My friend. !!

Looking for something else?

Not the answer you are looking for? Search for more explanations.