anonymous
  • anonymous
the quadratic function f(x)=x^2 -4tx+r has a minimum value 4t-4t^2 , where t and r are constants. the graph of function symmetrical about x= r-1. by using complete the square find value of r and t
Algebra
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
SolomonZelman
  • SolomonZelman
If the graph of the function is summetric about x=r-1, then the vertex is located at that line. (And vertex is a minimum if the parabola opens up.) And f(r-1)=(r-1)²-4t(r-1)+r f(r-1)=(r²-2r+1)-4tr-4t+r f(r-1)=r²-r+1-4tr-4t So vertex is ( r-1, r²-r+1-4tr-4t) \(\large\color{black}{ \displaystyle f(x)=x^2 -4tx+r }\) \(\large\color{black}{ \displaystyle f(x)=x^2 -4tx+r+\left(\frac{4t}{2}\right)^2-\left(\frac{4t}{2}\right)^2 }\) \(\large\color{black}{ \displaystyle f(x)=x^2 -4tx+\left(\frac{4t}{2}\right)^2+r-\left(\frac{4t}{2}\right)^2 }\) \(\large\color{black}{ \displaystyle f(x)=x^2 -4tx+\left(2t \right)^2+r-\left(2t\right)^2 }\) \(\large\color{black}{ \displaystyle f(x)=\left(x -2t\right)^2+r-4t^2 }\) And according to completing the square, the vertex is: (2t, r-4t²)
SolomonZelman
  • SolomonZelman
So, you can tell that: \(\large\color{black}{ \displaystyle r-1=2t }\) \(\large\color{black}{ \displaystyle r^2-r+1-4tr-4t=r-4t^2 }\)
SolomonZelman
  • SolomonZelman
that was based on the vertex.... Now, just solve the system.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Thanks a lot @SolomonZelman very helpful

Looking for something else?

Not the answer you are looking for? Search for more explanations.