anonymous
  • anonymous
Evaluate the limit, if it exists. (If an answer does not exist, enter DNE.) lim (x + h)^3 − x^3 (over) h h → 0
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
SolomonZelman
  • SolomonZelman
\(\large\color{slate}{\displaystyle\lim_{h \rightarrow ~0}\frac{(x+h)^3-x^3}{h}}\) (Or the derivative of x\(^3\), for which you should get 3x\(^2\), by the power rule, thus we know what value must your limit be equal to. --> If you have ever learned the power rule)
SolomonZelman
  • SolomonZelman
You have to expand the \((x+h)^3\), at first.
anonymous
  • anonymous
\[h^3+3h^2x+3hx^2+x^3\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

SolomonZelman
  • SolomonZelman
Yes, and now, write that on top of your fraction instead of (x+h)³.
SolomonZelman
  • SolomonZelman
\(\large\color{slate}{\displaystyle\lim_{h \rightarrow ~0}\frac{(x+h)^3-x^3}{h}}\) \(\large\color{slate}{\displaystyle\lim_{h \rightarrow ~0}\frac{h^3+3h^2x+3hx^2+x^3-x^3}{h}}\)
SolomonZelman
  • SolomonZelman
\(x^3\) goes away, and then h will cancel.
SolomonZelman
  • SolomonZelman
(The validity of dividing by h on top and bottom, as h\(\rightarrow\)0, is justified by the fact that you are taking values that are not actually equal to 0, rather near 0.)
SolomonZelman
  • SolomonZelman
\(\large\color{black}{\displaystyle\lim_{h \rightarrow ~0}\frac{h^3+3h^2x+3hx^2\cancel{~+x^3-x^3~}}{h}}\) \(\large\color{black}{\displaystyle\lim_{h \rightarrow ~0}\frac{h^3+3h^2x+3hx^2}{h}}\)

Looking for something else?

Not the answer you are looking for? Search for more explanations.