anonymous
  • anonymous
Add and simplify and please write out all of your steps. 5x-12/ x^2-16 + -8/x^2-16
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Some please help ):
jdoe0001
  • jdoe0001
\(\bf \cfrac{5x-12}{x^2-16}+\cfrac{-8}{x^2-16}?\)
anonymous
  • anonymous
Could you explain how to solve it to me? I'm very confused

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

jdoe0001
  • jdoe0001
ok... do you know the differences of squares yet? as in \(\bf \textit{difference of squares} \\ \quad \\ (a-b)(a+b) = a^2-b^2\qquad \qquad a^2-b^2 = (a-b)(a+b)\)
anonymous
  • anonymous
Yes
jdoe0001
  • jdoe0001
ok... well then \(\bf \cfrac{5x-12}{x^2-16}+\cfrac{-8}{x^2-16} \\ \quad \\ {\color{brown}{ \cfrac{a}{b}+\cfrac{c}{b}\implies \cfrac{a+c}{b} }}\qquad thus \\ \quad \\ \cfrac{5x-12}{x^2-16}+\cfrac{-8}{x^2-16}\implies \cfrac{(5x-12)+(-8)}{x^2-16}\qquad {\color{brown}{ 16=4^2}}\qquad thus \\ \quad \\ \cfrac{5x-12-8}{x^2-{\color{brown}{ 4^2}}}\implies \cfrac{5x-20}{(x-4)(x+4)}\implies ?\)
jdoe0001
  • jdoe0001
notice the numerator you can take a common factor what do you think it is?
anonymous
  • anonymous
5?
jdoe0001
  • jdoe0001
anyhow.. need to dash... as you can see, is 5, yes, for the common factor of the numerator thus \(\bf \cfrac{5x-12-8}{x^2-{\color{brown}{ 4^2}}}\implies \cfrac{5x-20}{(x-4)(x+4)}\implies \cfrac{5\cancel{(x-4)}}{\cancel{(x-4)}(x+4)}\)
anonymous
  • anonymous
So 5/x+4 is the answer?
anonymous
  • anonymous
Also could you help me with another problem?
anonymous
  • anonymous
Subtract and simplify 4y/y^2-6y+8 - 16/y^2-6y+8

Looking for something else?

Not the answer you are looking for? Search for more explanations.