A simple graph G must have atleast 2 vertices, prove that G must contain two or more vertices of the same degree

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

A simple graph G must have atleast 2 vertices, prove that G must contain two or more vertices of the same degree

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Suppose we have n vertices and they all have different degree. Then the degree sequence must be \(0,1,2,3,4,5,6,...,n-1\) (from the pigeon hole property). If there is a vertex of degree \(n−1\) then there can't be one of degree \(0\).
sorry i kinda dont get it.
The question is asking to show that in every simple graph there must be at least 2 vertices with the same degree. In other words, it is NOT the case that all the vertices in a simple graph have different degrees. So we take a graph with \(n\ge 2\) vertices and assume by contradiction that no two vertices have the same degree. In other words, every vertex has a different degree than every other vertex. This means that the degree sequence is \(0,1,2,...,n-1\). Why? Well take any vertex, the highest degree it can have is \(n-1\) because that's how many other vertices there are, and the lowest degree it will have is \(0\). Well suppose we have 6 vertices and we pick some vertex and it has degree 4, then if we pick another it cant have degree 4, so it has some other degree, say 2. Then pick a third and it must have degree different from 2 and 4, say 3. Then pick a 4th vertex....if you keep doing this you will arrive at the degree sequence 0,1,2,3,4,5. Does this make sense?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

i got it thank you very much ...

Not the answer you are looking for?

Search for more explanations.

Ask your own question