prizzyjade
  • prizzyjade
A simple graph G must have atleast 2 vertices, prove that G must contain two or more vertices of the same degree
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
zzr0ck3r
  • zzr0ck3r
Suppose we have n vertices and they all have different degree. Then the degree sequence must be \(0,1,2,3,4,5,6,...,n-1\) (from the pigeon hole property). If there is a vertex of degree \(n−1\) then there can't be one of degree \(0\).
prizzyjade
  • prizzyjade
sorry i kinda dont get it.
zzr0ck3r
  • zzr0ck3r
The question is asking to show that in every simple graph there must be at least 2 vertices with the same degree. In other words, it is NOT the case that all the vertices in a simple graph have different degrees. So we take a graph with \(n\ge 2\) vertices and assume by contradiction that no two vertices have the same degree. In other words, every vertex has a different degree than every other vertex. This means that the degree sequence is \(0,1,2,...,n-1\). Why? Well take any vertex, the highest degree it can have is \(n-1\) because that's how many other vertices there are, and the lowest degree it will have is \(0\). Well suppose we have 6 vertices and we pick some vertex and it has degree 4, then if we pick another it cant have degree 4, so it has some other degree, say 2. Then pick a third and it must have degree different from 2 and 4, say 3. Then pick a 4th vertex....if you keep doing this you will arrive at the degree sequence 0,1,2,3,4,5. Does this make sense?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

prizzyjade
  • prizzyjade
i got it thank you very much ...

Looking for something else?

Not the answer you are looking for? Search for more explanations.