kiiraa_x3
  • kiiraa_x3
help in math>
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
kiiraa_x3
  • kiiraa_x3
|dw:1442506905537:dw|
kiiraa_x3
  • kiiraa_x3
Simplify the expression and rewrite in rational exponent
kiiraa_x3
  • kiiraa_x3
@Nnesha @nincompoop

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Nnesha
  • Nnesha
\[\large\rm \frac{ x^\frac{ 3 }{ 2 } ·24y ·\sqrt[4]{4^3}}{ 3x^\frac{ 1 }{ 2 } ·4\sqrt[3]{x^2} }\] is this right ?
kiiraa_x3
  • kiiraa_x3
In the sq root its y^3 not 4^3 other then that its right :)
Nnesha
  • Nnesha
oh okay thanks\[\large\rm \frac{ x^\frac{ 3 }{ 2 } ·24y ·\sqrt[4]{y^3}}{ 3x^\frac{ 1 }{ 2 } ·4\sqrt[3]{x^2} }\] we should apply exponent rules first you should convert radical to exponent form \[\huge\rm \sqrt[n]{x^m}=x^\frac{ m }{ n }\] index becomes denominator of the fraction
Nnesha
  • Nnesha
\[\huge\rm \sqrt[4]{y^3}= y^\frac{ ?? }{ ?? }\]
kiiraa_x3
  • kiiraa_x3
y 8/4
Nnesha
  • Nnesha
hmm 8 ?
Nnesha
  • Nnesha
the power of the variable is 3 thats what you should write in the numerator
kiiraa_x3
  • kiiraa_x3
Oops 3/4
Nnesha
  • Nnesha
yes right oh okay thanks\[\large\rm \frac{ x^\frac{ 3 }{ 2 } ·24y · {y^\frac{3}{4}}}{ 3x^\frac{ 1 }{ 2 } ·4\sqrt[3]{x^2} }\] what about \[\sqrt[3]{x^2}=??\]
kiiraa_x3
  • kiiraa_x3
X 2/3
Nnesha
  • Nnesha
\[\large\rm \frac{ x^\frac{ 3 }{ 2 } ·24y · {y^\frac{3}{4}}}{ 3x^\frac{ 1 }{ 2 } ·4· x^\frac{2}{3} }\] when we multiply same bases we should `ADD` their exponents \[\huge\rm x^m · x^n=x^{m+n}\] apply this exponent rule
kiiraa_x3
  • kiiraa_x3
Okay
Nnesha
  • Nnesha
y is same as y to the one power \[\large\rm \frac{ x^\frac{ 3 }{ 2 } ·24y^1 · {y^\frac{3}{4}}}{ 3x^\frac{ 1 }{ 2 } ·4· x^\frac{2}{3} }\] now add the exponent of the same base at the numerator let me know what you get
kiiraa_x3
  • kiiraa_x3
5/3 for x and 3/4 for y ?
Nnesha
  • Nnesha
how did you get 5/3 for x first deal with the numerator add the exponent of the same and there is y \[\large\rm \frac{ x^\frac{ 3 }{ 2 } ·\color{reD}{24y^1 · {y^\frac{3}{4}}}}{ 3x^\frac{ 1 }{ 2 } ·4· x^\frac{2}{3} }\] add the exponent
Nnesha
  • Nnesha
\[\huge\rm 24y^1 · 1y^\frac{ 3 }{ 4} \] bases are same (y) so add exponents and multiply the coefficient (24· 1)y^{1+3/4}
kiiraa_x3
  • kiiraa_x3
9/2?
Nnesha
  • Nnesha
how did you get 9/2 ?

Looking for something else?

Not the answer you are looking for? Search for more explanations.