How would you approach this integral?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

How would you approach this integral?

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\(\Huge \int \frac{x}{\sqrt{x^4-1}} dx \)
I wish I could help :O
Here's my thinking, step by step: I'd start by looking for substitutions. 1. Try u = x^4. Tried this substitution but it didn't help much. 2. Try u = x^2. This gives integral of 0.5*(u^2-1)^-0.5. Helpful. Let's take this forward. 3. Notice the u^2 - 1 on the bottom. If I substitute u = cosh(theta), then u^2-1 becomes sinh^2 (theta). Furthermore, the u*du on the top becomes sinh(theta)d(theta), which cancels a bit. Nice! 4. Let me work the next bit out on paper, then I'll get back to you... :)

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Oops, I missed a square root. In fact, step 3 gives sinh(u)/sinh(u), which is just 1. So step four is just integrate 1 w.r.t. theta, which gives theta.
Now unravelling the substitutions in reverse order, u = x^2 and u = cosh(theta). So theta becomes arccosh(u) which is arccosh(x^2). So the final answer is arccosh(x^2), I think!
(I can write this up properly with the maths/equation/LaTeX notation, if you want)
Thanks for your input, it was arccosh (x^2) +C actually :D I see what I did wrong tho.. I used a bad substitution :/
Oops, yes, I always forget the +C ! Substitutions are a pain, it's often a case of trial and error. Apparently it gets better with "experience", but I reckon that probably means doing enough practice problems to remember most of them :/
True, thanks for your help, really appreciate it (:
No problem! :)

Not the answer you are looking for?

Search for more explanations.

Ask your own question