anonymous
  • anonymous
point x (6,4) and y (-4,-16) are the endpoint of XY. what are the coordinates of point Z on XY such that XZ is 4/5 the length of XY a) (4,0) b) (0,-8) c) (1,-6) d) (-2,-12)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
distance is \[d=\sqrt{(x _{2}-x _{1})^{2}+(y _{2}-y _{1})^2}\] d= sqrt (-4-6)^2 + (-16-4)^2 d= sqrt (-10)^2 + (-20)^2 d= sqrt 100+400 d=sqrt 500 d=22.36 The distance from point x to point y is about 22.36. 4/5 of this distance is 17.888 (.8 * 22.26) So the distance from X to Z has to be 17.888 17.888=sqrt (x2-6)^2 + (y2-4)^2 you can guestimate from here with the answer choices looking at the graph, you know Z will be closer to Y.|dw:1442530338070:dw| you can also guess that the coordinates of z will both be negative from the graph. so lets try the coordinate (-2,-12 from your options) 17.88=sqrt(-2-6)^2 + (-12-4)^2 17.88=sqrt (-8)^2 + (-16)^2 17.88= sqrt 64+256 17.88= sqrt320 17.88=17.88 this is a true statement. D is your answer
anonymous
  • anonymous
thanks you

Looking for something else?

Not the answer you are looking for? Search for more explanations.