anonymous
  • anonymous
Given the differential equation dy/dx= (e^y)(x^2) and the initial condition y(1)=0, find the solution y explicitly using separation of variables.
Calculus1
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[\frac{ dy }{ dx }=e^yx^2\] Start by getting the x's and y's on different sides of the equation. Is it integrating you had trouble with?
anonymous
  • anonymous
\[\int\limits e^{-y}dy=\int\limits x^2dx\]
anonymous
  • anonymous
Yeah I'm struggling with the intergration part... I got \[(\ln e^y)/y = (1/3)x^3 + C\] I'm not sure if I can cancel ln and e

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
I think I'm struggling with what happens after that
amistre64
  • amistre64
e^(-y) dy, integrates to -e^(-y)
amistre64
  • amistre64
\[-e^{-y}=\frac13x^3+C\] \[e^{-y}=-\frac13x^3+C\] \[ln(e^{-y})=ln(-\frac13x^3+C)\] \[-y=ln(-\frac13x^3+C)\] \[y=-ln(-\frac13x^3+C)\]
amistre64
  • amistre64
of course there needs to be some restrictions or absolute value bars to make things proper i spose
anonymous
  • anonymous
Ohhh, I see my mistake. After that, I just need to plug in my initial condition and find C. Thank you very much!!!! :) I understand why I got it wrong...
amistre64
  • amistre64
good luck

Looking for something else?

Not the answer you are looking for? Search for more explanations.