anonymous
  • anonymous
A crankshaft with a diameter of 3.0 cm, rotating at 2200 rpm comes to a halt in 1.50 s . What is the tangential acceleration of a point on the surface of the crankshaft?
Physics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
2200rpm=2200 revolution per minutes \[\frac{ 2200 revolution }{ \min } \times \frac{ 1\min }{ 60seconds } \times \frac{ 2\pi radians }{ 1 revolution }\]=230.283 radians/seconds
anonymous
  • anonymous
\[\alpha=\frac{ v }{ t }\] Angular acceleration=velocity of circular motion divided by time. \[\alpha=\frac{ 230.283 radians/seconds }{ 1.50 seconds }\] =\[15.36 radians/seconds^2\]
anonymous
  • anonymous
\[a _{t}=\alpha r\] where tangential acceleration= angular acceleration x radius. Radius would have to be in meters. Radius=diameter/2

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
The final answer was -2.30 m/s^2. I wouldn't have figured it out without your help, thank you so much.
anonymous
  • anonymous
No problem!

Looking for something else?

Not the answer you are looking for? Search for more explanations.