anonymous
  • anonymous
Assume that f(x)={e^-x if x≥0, 1+x if x<0 What is lim x→0 f(x), if the limit exist? Do you understand this? :)
Calculus1
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
johnweldon1993
  • johnweldon1993
Honestly I forgot how to make piecewise functions in latex...so it wont look nice what I do lol..but f(x) = { e^(-x), x >= 0 {1 + x, x < 0 Limit as x approaches 0 So...since this doesn't specify if we are going from the left or the right...and just the point where the function breaks into pieces...we need to compute 2 limits limit as x approaches 0 of e^(-x) = ??? and limit as x approaches 0 of 1 + x = ??? Once you have those 2 answers: -->If they are equal...the limit is THAT answer -->If they are different...the limit does not exist
anonymous
  • anonymous
Ok, great! :)
anonymous
  • anonymous
Here's the latex you're looking for: `\begin{cases}` `e^{-x} & \text{for } x\ge0 \\ %optional: [#ex], I use 2 in place of # below` `x+1 & \text{for } x<0` `\end{cases}` \[\begin{cases} e^{-x} & \text{for }x\ge0\\[2ex] x+1 & \text{for }x <0 \end{cases}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.