Use "Lagranges" multiplication method to find points in the curve; 5x^2 + 6xy + 5y^2 = 1, which is closest and furtherest away from origo - and find the max/min distance. What would be the steps involved solving this?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Use "Lagranges" multiplication method to find points in the curve; 5x^2 + 6xy + 5y^2 = 1, which is closest and furtherest away from origo - and find the max/min distance. What would be the steps involved solving this?

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

you are minimising a function - the distance formula - which we shall call f(x,y) with this ellipse as the condition g(x,y) the lagrange multiplier reduces the algebra down to solving this: \(\nabla f = \lambda \nabla g\) ie solve for \(\lambda\)
Okay, It looks like I will have to do some more work on gradients - as I am not very familiar with those
well, that's just shorthand for \(\large \frac{\partial f}{\partial x} = \lambda\frac{\partial g}{\partial x}\) and \(\large \frac{\partial f}{\partial y} = \lambda\frac{\partial g}{\partial y}\)

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Not the answer you are looking for?

Search for more explanations.

Ask your own question