Loser66
  • Loser66
Show that gcd (even, odd) = odd Please, help
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Loser66
  • Loser66
@zzr0ck3r
zzr0ck3r
  • zzr0ck3r
if it was even, then an even number divides an odd number, yikes!
Loser66
  • Loser66
I need algebraic proof, not logic one. Please.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Loser66
  • Loser66
even = 2k odd = 2m +1 gcd (2k, 2m +1) = d, and prove d is odd.
Empty
  • Empty
This troubles me
zzr0ck3r
  • zzr0ck3r
Suppose by way of contradiction that \(c=\gcd(2k, 2k_0+1)\) where \(c=2k_2\) is even. Then \(2k_0+1=2(2k_2)\)
Loser66
  • Loser66
This is what I have: d| 2k d| 2m +1 hence d| 2k + 2m +1 d| 2(k+m) +1 then ... stuck.
zzr0ck3r
  • zzr0ck3r
Then \(2k_0+1=k(2k_2)\) for osme \(k\).
Loser66
  • Loser66
From where, you have \(2k_0 +1 = 2 (2k_2)\)?
zzr0ck3r
  • zzr0ck3r
that should say \[2k_0+1=k(2k_2)\]
Loser66
  • Loser66
Use other letter, please, it confuses me when the fist element is k, and this k.
Loser66
  • Loser66
Got you.!! thanks a lot
zzr0ck3r
  • zzr0ck3r
lol ok PF Suppose \(a\) is even, \(b\) is odd. Then \(b=2k_1+1\) for some \(k_1\in \mathbb{Z}\). Now suppose \(c=\gcd(a,b)\) and \(c\) is even. Then \(c=2k_2\) for some \(k_2\in \mathbb{Z}\). Since \(c\) is the GCD of \(a\) and \(b\) it must divide both. So \(c\) divdes \(b\) and thus \(b=c*k_3\) where \(k_3\in \mathbb{Z}\) So \(2k_1+1=k_3(2k_2)\) a contradiction
zzr0ck3r
  • zzr0ck3r
an even number cant divide an odd number evenly is actually what you prove.
zzr0ck3r
  • zzr0ck3r
np

Looking for something else?

Not the answer you are looking for? Search for more explanations.