calculusxy
  • calculusxy
Help with exponents! @hartnn
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
calculusxy
  • calculusxy
\[\huge (2v)^2 \times 2v^2\]
calculusxy
  • calculusxy
\[\large (2v)^2 = 2^2 \times v^2 = 4v^2\] \[\large 4v^2 \times 2v^2 = 8v^2 \] or does it equal to\[\large 8v^4\]
Nnesha
  • Nnesha
\[\huge\rm (ab)^m =a^m b^m\] apply this exponent first both number in the parentheses are raising to the m power

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Nnesha
  • Nnesha
looks good!
calculusxy
  • calculusxy
So which one does it equal to?
calculusxy
  • calculusxy
\[\large 8v^2 \] or \[\large 8v^4\]
Nnesha
  • Nnesha
ohh i see well when we multiply same bases we should `ADD` their exponents
calculusxy
  • calculusxy
oh okay so it is \[8v^4 \] right?
Nnesha
  • Nnesha
remember it's not `combine like terms` \[2x+3x=(2+3)x\] when we add/subtract like terms variable stay the same but when we multiply them we should add their exponents
Nnesha
  • Nnesha
yes right
calculusxy
  • calculusxy
I have another question @Nnesha
Nnesha
  • Nnesha
okay :=)
Nnesha
  • Nnesha
when you `ADD or subtract ` like terms u just have to deal with the coefficients like \[2x+3x=(2+3)x\] but when we multiply same bases we should `add` their exponents and multiply the coefficient\[\huge\rm \color{Red}{1}x^m · \color{blue}{1}x^n=(\color{red}{1} ·\color{blue}{1})x^{m+n}\]
calculusxy
  • calculusxy
\[\huge \frac{ 2x^2y^4 \times 4x^2y^4 \times 3x }{ 3x^{-3}y^2 }\]
Nnesha
  • Nnesha
ayoooXD
anonymous
  • anonymous
I guess you forget what he/she did there lol
1 Attachment
Nnesha
  • Nnesha
multiply the coefficients and add the exponent of the same base
Nnesha
  • Nnesha
\[\huge \frac{ 2x^2y^4 \times 4x^2y^4 \times 3x }{ 3x^{-3}y^2 }\] can be written as \[\frac{ (2·4·3)(x^2·x^2·x)(y^4·y^4) }{3x^{-3}y^2 }\]
Nnesha
  • Nnesha
and x is same as x^1
calculusxy
  • calculusxy
\[\large \frac{ 16x^5y^8 }{3x^{-3}y^2 } = \frac{ 16x^8y^6 }{ 3 }\]
Nnesha
  • Nnesha
(2 times 3 times 4) isn't equal to 16 :=) x^8 and y^6 is correct
calculusxy
  • calculusxy
sorry 24
Nnesha
  • Nnesha
yes 24/3 simplify done!
calculusxy
  • calculusxy
8
Nnesha
  • Nnesha
that's it great job!
calculusxy
  • calculusxy
Thank you! If i need more help can i mention you...?
Nnesha
  • Nnesha
sure!

Looking for something else?

Not the answer you are looking for? Search for more explanations.