Why does n*log(-a) != log([-a]^n). For example, suppose n = 2, and a =4.

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Why does n*log(-a) != log([-a]^n). For example, suppose n = 2, and a =4.

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\[n \log (-a) \neq \log([-a]^n)\] e.g. n =2, a = 4 \[n \log (-a) \neq \log([-a]^n)\] \[2 \log (-4) \neq \log([-4]^2)\] \[2 \log (-4) \neq \log(16)\] LHS is undefined and right hand side has a value. Why do the log laws not seem to work in this case?
The reason is you're assuming \(a\) is a negative number and then plugging in a positive number. It will work if you plug in negative values for a.
Ok ok, maybe that's kind of a cheap answer, so I'll say it another way: \[\log(4)=\log((-2)^2)\ne2\log(-2)\] So unfortunately negative numbers in logarithms are mostly nonsense, but you can find answers for what they mean if you are working with complex numbers. But at that point, then you will find that the logarithm is really multi-valued!

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

i agree. you put in positive on the rhs, but the lhs is undefined in the example It is sort of like starting with 2=3 and then concluding that 1=0 and then questioning addition
Thanks guys, so the law just basically assumes that a and n are positive.

Not the answer you are looking for?

Search for more explanations.

Ask your own question