anonymous
  • anonymous
Find the upper-bound for the summation, such that: (using the lowest possible integer)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
amistre64
  • amistre64
it feels like there is something missing in the post
anonymous
  • anonymous
oops
anonymous
  • anonymous
\[\sum_{n=4200}^{x}n ^{1.5} \ge 1.0 \times 10^{8}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
not sure if possible. I could solve it if it was something like 5n
amistre64
  • amistre64
does this have anything to do with a remainder thrm?
anonymous
  • anonymous
I want to solve it for a game. Putting in random numbers, the closest integer I could get to have the same as close as possible to 100 million is 4563
anonymous
  • anonymous
*starting at 4220 >_>
anonymous
  • anonymous
Wolfram gives me weird zeta functions or harmonic numbers
amistre64
  • amistre64
10^8, or 10^7?
anonymous
  • anonymous
100 million, so 10^8 (if I did that right)
amistre64
  • amistre64
\[\int_{4200}^{x}x^{1.5}dx=x^{2.5}/2.5-(4200)^{2.5}/2.5\] \[x^{2.5}/2.5-(4200)^{2.5}/2.5=10^8\] \[x^{2.5}-(4200)^{2.5}=2.5*10^8\] \[x^{2.5}=(4200)^{2.5}+2.5*10^8\] \[x=((4200)^{2.5}+2.5*10^8\])^{1/}
amistre64
  • amistre64
ugh ... firefox crashed at the end of that
amistre64
  • amistre64
\[x=((4200)^{2.5}+2.5*10^8)^{1/2.5}=4545.ddd\]
anonymous
  • anonymous
I tried integrals, I must have done it wrong.
amistre64
  • amistre64
http://www.wolframalpha.com/input/?i=sum%28n%3D4200+to+4545%29n^%281.5%29
amistre64
  • amistre64
letting x=4545 seems to be fair
anonymous
  • anonymous
oh, I see what I did wrong. Thank you :D
amistre64
  • amistre64
yw

Looking for something else?

Not the answer you are looking for? Search for more explanations.