anonymous
  • anonymous
Find the limit L. Then use the ε-δ definition to prove that the limit is L. Lim (-5) x->4
Calculus1
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
What exactly is the limit? Is it just \[\lim_{x\to4}(-5)~~?\]
anonymous
  • anonymous
If that's the case, it should be clear enough what the limit is, considering \(f(x)=-5\) is a constant function. To prove this limit, you have to show that for any \(\epsilon>0\), you can find \(\delta\) as a function of \(\epsilon\) such that \(|f(x)-L|=\color{red}{|-5-L|<\epsilon}\) if \(0<|x-4|<\delta\). The red inequality is the key to the proof. If you can determine \(L\), you're done. An easy proof for an easy limit.

Looking for something else?

Not the answer you are looking for? Search for more explanations.